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A B S T R A C T   

Water vapor is the most variable constituent in the atmosphere and plays an important role in climate studies, 
mesoscale meteorology modeling and numerical weather forecasting. Being able to penetrate clouds, interfer
ometric synthetic aperture radar (InSAR) shows great potential in atmospheric water vapor mapping. But InSAR 
can only measure differential water vapor between two acquisitions. In this paper, we formulate a general 
framework by constructing the Gauss-Markov model and developing the estimation method to retrieve the non- 
differential water vapor from Small BAseline Subset InSAR (SBAS-InSAR). To address the rank-deficiency in the 
Gauss-Markov model, we propose a new constraint, i.e., the temporal mean of water vapor being invariant. 
Simulated and real data experiments are conducted to validate the effectiveness of the framework and the ad
vantages of the proposed constraint. The results show that the new constraint can offer an estimation more robust 
than the two traditional ones, i.e., the temporal mean of water vapor being zero and single or multiple epoch 
water vapor referencing. In addition, we found that there exists a constant bias, which equals to the temporal 
mean of water vapors, between the solutions under the new constraint and that under the constraint of the 
temporal mean of water vapor being zero. Finally, the possible methods to evaluate the temporal mean of water 
vapor are discussed.   

1. Introduction 

Water vapor is the most variable constituent in the atmosphere. It 
influences the Earth’s radiation budget, energy transfer, cloud formation 
and precipitation (Duan et al., 1996; Philipona et al., 2005; Zhao et al., 
2016), and plays a key role in climate study, mesoscale meteorology 
modeling and numerical weather forecasting (Bevis et al., 1992; Yan 
et al., 2009). Over the past decades, many techniques have been pro
posed to measure the water vapor, e.g., Radiosondes, water vapor 
radiometer, Global Navigation Satellite System (GNSS), and imaging 
spectroradiometer. However, Radiosondes (Li et al., 2003; Zhang et al., 
2018) or water vapor radiometer measurements (Niell et al., 2001) have 
limited spatial and temporal resolutions. GNSS measurements can pro
vide PWV with a dense temporal sampling. However, their spatial res
olution is always not high enough to capture the variations of the local 
water vapor (Benevides et al., 2016). The passive multispectral imager, 
such as Moderate Resolution Imaging Spectroradiometer (MODIS) and 
Medium Resolution Imaging Spectrometer (MERIS), can only measure 
water vapor in the daytime under cloud-free conditions (Li, 2005; 

Bennartz and Fischer, 2001). Besides, the spatial resolution of the 
measurements is poor. These limitations degrade the quality of 
short-term (0–24 h) precipitation prediction. 

Interferometric synthetic aperture radar (InSAR) is a powerful earth 
observation technology, with all-weather and day-and-night imaging 
capability, wide spatial coverage, fine resolution and competitive ac
curacy (Massonnet and Feigl, 1998). Atmospheric delay in InSAR is 
dominated by water vapor and can be estimated pixel by pixel. This 
offers a great potential to derive high spatial resolution water vapor 
from InSAR observations by analyzing the InSAR atmospheric delay. 
However, as a relative measurement tool, InSAR can only estimate the 
differential water vapor between two SAR acquisitions (Hanssen et al., 
1999; Li et al., 2006). Many studies have demonstrated the ability of 
InSAR in estimating high-resolution differential precipitable water 
vapor (PWV) (Mateus et al., 2011, 2018; Benevides et al., 2016; Chang 
et al., 2016; Tang et al., 2016), but how to estimate the non-differential 
PWV from InSAR have not been systematically investigated and satis
factorily resolved. Until now, only several studies applied InSAR to es
timate non-differential PWV. Liu (2012) proposed to evaluate the 
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non-differential PWV of the master SAR image by the Least-Squares 
Collocation (LSC) in time domain firstly, and then used the LSC algo
rithm to estimate the non-differential PWV of each slave image in space 
domain. However, this approach is only suitable to the interferograms 
with a common master image. Meanwhile, it is based on the assumptions 
that water vapor in troposphere is isotropic and spatially stationary. 
Similarly, Pichelli et al. (2015) first estimated the master image’s PWV 
by introducing a constraint (i.e., the external PWV from Medium Res
olution Imaging Spectrometer), and then evaluated the PWVs corre
sponding to each slave SAR image of the generated interferograms. But it 
is unsuitable to the multiple master images’ case. However, errors in the 
master image would be passed to slave images by interferograms in 
terms of the theory of error transfer and the larger the time interval 
between the master and slave image, the lower the estimation accuracy. 
In addition, this method is not applicable to the case of multiple master 
image interferograms. Another way to add constraint is assuming the 
temporal mean of water vapor being zero (Alshawaf et al., 2015). This 
method, however, needs a large number of SAR images and is only 
applicable to flat region. Additionally, if one of the SAR images was 
obtained under extreme weather such as thunderstorms, the PWVs 
derived from this method would be contaminated greatly. 

To overcome these limitations, we formulate a general framework to 
estimate the non-differential water vapor based on SBAS-InSAR, and 
develop a new constraint, the temporal mean of water vapor being 
invariant, to stabilize the system of water vapor estimation under the 
framework. The rest of this paper is organized as follows. Section 2 
constructs the Gauss-Markov model for non-differential water vapor 
estimation from SBAS-InSAR, and Section 3 schematically discusses the 
non-differential water vapor estimation based on the Gauss-Markov 
model and traditional constraints. In Section 4, we propose a new 
constraint, followed by the experiments using the simulation and real 
data in Section 5. Discussions are presented in Section 6 to address the 
influences of constraints on non-differential water vapor estimation and 
the possible determinations of temporal mean of water vapor. Finally, 
some conclusions are drawn in Section 7. 

2. Gauss-Markov model for non-differential water vapor 
estimation from SBAS-InSAR 

Give N SAR images and each image with r � c pixels (r and c 
represent the number of rank and column, respectively) was acquired 
from the same satellite track at time epochs ðt1;⋯; tNÞ. We assume that 
these images are coregistered to a common reference geometry. A 
network with M (where N=2 � M � NðN � 1Þ=2) interferometric pairs 
is constructed with the N coregistered SAR images. Each interferometric 
pair is processed according to the standard differential InSAR and all 
differential interferograms are correctly unwrapped. Assume that η 
pixels are selected to estimate the non-differential water vapor in time 
series. The unwrapped phase ðΔφx;i;j

ifg Þ of pixel x in an interferogram with 
master acquisition ti and slave acquisition tjðtj > tiÞ can be written as 
(Hanssen, 2001; Guarnieri and Tebaldini, 2007) 

Δφx;i;j
ifg ¼Δφx;i;j

defo þ Δφx;i;j
topo þ Δφx;i;j

orbit þ Δφx;i;j
atm þ ex;i;j (1)  

where x represents xth pixel in interferogram, i and j denotes the ith and 
jth time epoch of SAR image, respectively. Δφx;i;j

defo represents the cumu

lative surface deformation between two SAR acquisitions, Δφx;i;j
topo is the 

phase of land topography, Δφx;i;j
orbit represents the phase caused by inac

curate satellite orbits, ex;i;j denotes the noise components including the 
system thermal noise, decorrelation noise, co-registration noise and 
processing noise, Δφx;i;j

atm is the phase of the atmospheric delay difference. 
The atmospheric delay includes the hydrostatic part and the non- 
hydrostatic part. The hydrostatic delay varies smoothly both in space 
and time domain and can be estimated with ground atmospheric 

pressure and local temperature at a high accuracy. Therefore, it is not 
considered in this paper, and the atmospheric delay only refers to the 
non-hydrostatic component hereafter. The residual orbital errors can be 
removed by a surface trend model. The long wavelength atmosphere, a 
part of the non-hydrostatic component, with a characteristic similar to 
that of the orbit error, may also be removed. Therefore, the atmospheric 
delay used for water vapor mapping in this study mainly consists of the 
short-scale component (i.e., the turbulence atmosphere) and the 
topography-correlated component (i.e., the vertical stratification at
mosphere). In addition, the deformation term, Δφx;i;j

defo, can be removed if 

no ground deformation occurs. The topography contribution, Δφx;i;j
topo, can 

be compensated by a global DEM (e.g., SRTM DEM). However, it should 
be noted that some of these individual removal processes may be 
contaminated because of each contribution from the long wavelength 
hardly be separated completely. 

Then, after removing the deformation phase, topographic phase, 
orbital error, and the hydrostatic phase of atmosphere, we can construct 
a linear model for each pixel as 

Δϕx;i;j¼ϕx
atm

�
tj
�
� ϕx

atmðtiÞ þ ex (2)  

which can be written in the matrix form: 

Y¼AX þ e (3)  

whereY is the M� 1 observation vector containing unwrapped inter
ferometric phases, X is the N� 1 unknown parameter vector, which 
contains the unknown water vapor at the epoch of each SAR acquisition. 
A is a design matrix with dimensions M� N. If we adopt the older SAR 
image as the master, matrix A fills each row with � 1 for the master 
epoch (ti) and 1 for the salve epoch (tj), and zeros for the rest epochs, 
resulting in 

A¼

2

6
6
4

� 1 1 0 0 ⋯ 0
0 � 1 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 � 1 ⋯ 1

3

7
7
5

whereas the functional model relates observations with unknown pa
rameters, the stochastic model characterizes the priori precision of the 
observations by its variance-covariance matrix. This characterization 
directly affects the estimation precision of unknown parameters. The 
stochastic model can be defined as (Hanssen, 2001) 

DYY ¼ σ2
0QYY (4)  

where DYY is the covariance matrix of the time-series observations, σ2
0 is 

the a priori variance factor, and QYY is the relative cofactor matrix, 
which can be determined from the observation noise. 

Assuming the N SAR acquisitions constitute only one small baseline 
subset, there are only N � 1 independent interferograms, since the M 
interferograms are formed from the N acquisitions. So the rest 
M � ðN � 1Þ interferograms can be obtained via the linear combination 
of the N � 1 independent interferograms. Therefore, the rank of the 
design matrix A in Eq. (3) is 

rankðAÞ¼N � 1 (5) 

Since the number of unknown parameters is N, greater than the 
number of independent equations, the linear system in Eq. (3) is rank- 
deficient. In other words, it will have infinite solutions. 

3. Non-differential water vapor estimation under traditional 
constraints 

In order to get a mathematically unique solution with clear physical 
significance, one or more constraints should be adopted in estimating 
the non-differential water vapor using the Gauss-Markov model. 
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3.1. General constraint 

Assume the general constraint is 

GT X � Wg ¼ 0 (6)  

where GT is the coefficient of X and Wg is the constant term. Meanwhile, 
dimensions of GT and Wg is M0 � N and M0 � 1 (M0 is the number of 
constraint equation), respectively. Combined with the general 
constraint (i.e., Eq. (6)), Eq. (3) can be written as 
�

Y ¼ AX þ e GT X � Wg ¼ 0 (7) 

Simplified as 

Ytotal ¼AtotalX þ etotal (8)  

where Ytotal ¼

�
Y

Wg

�

, Atotal ¼

�
A

GT

�

and etotal ¼

�
e
0

�

. Meanwhile, the 

dimensions of Ytotal , Atotal and etotal is ðM þ M0Þ� 1, ðMþM0Þ� N and 
ðM þ M0Þ� 1, respectively. Besides that, the number of equations (i.e., 
Mþ M0) is larger than the number of unknown parameters (i.e., N) in 
Eq. (8) by using SBAS-InSAR algorithm and the coefficient matrix (i.e., 
Atotal) is full rank. This means Eq. (8) is referred to as an overdetermined 
system and widely be solved by the weighted least-squares (WLS) 
method (Teunissen et al., 2008). However, the principle of the WLS al
gorithm is searching bX to make the squared norm of the least-squares 
residual vector being minimum, namely VT

totalPtotalVtotal is minimum. 
The matrix Ptotal represents the weight of matrix Ytotal and Vtotal denotes 
the least-squares residual vector which be defined as the difference be
tween AtotalX and Atotal bX : 

Vtotal ¼AtotalX � Atotal bX (9)  

where bX is the estimator of X. Then, under this condition, the WLS so
lution of X can be computed from Ytotal , Atotal and Qtotal as 

bX ¼
�
AT

total Q� 1
total Atotal

�� 1AT
total Q� 1

totalYtotal 

¼

��
A

GT

�T�Q11 Q12
Q21 Q22

�� 1� A
GT

��� 1�
A

GT

�T�Q11 Q12
Q21 Q22

�� 1� Y
Wg

�

(10)  

where Qtotal is the total variance and covariance matrix for Eq. (8)) and 

Qtotal ¼

�
Q11 Q12
Q21 Q22

�

, Q11 and Q22 is the variance and covariance matrix 

for Eq. (3)) and Eq. (6)), respectively. Q12 equals to Q21 and represents 
the covariance matrix between Eq. (3)) and Eq. (6). 

The matrix Qtotal not only depends on the noises in interferograms, 
such as decorrelation noise, co-registration noise and data processing 
noise, but also depends on the measurement accuracy of the added 
constraint. However, these are hard to estimate by using a deterministic 
model as present. Therefore, Qtotal is simply taken as the identity matrix 
in this research. Then, the WLS solution of X can be simplified as 

bX ¼
�
ATAþ GGT�� 1 �ATYþGWg

�
(11)  

3.2. One or more epoch’s water vapor being known 

Using one or more external water vapor measurements (e.g. from 
MERIS) acquired during the same period with the SAR acquisitions is the 
easiest constraint method for estimating non-differential water vapor 
(Pichelli et al., 2015; Duan, 2016; Mateus et al., 2017). We refer it as 
‘One-epoch Known Constraint’ hereafter. In this case, GT ¼ (0,⋯,1,⋯,1, 
0), and 1 represents the position of external water vapor measurements 
in SAR image time series. The number of “1” represents the number of 
known water vapor images. 

However, each interferogram participating in non-differential water 

vapor mapping certainly contains various noises (e.g., data processing 
noise, thermal noise, spatial-temporal decoherence noise). Therefore, 
based on the theory of error diffusion, the smaller the time interval 
between the known water vapor image and the unknown epoch image, 
the higher the estimation accuracy. Generally, the number of known 
water vapor images and their corresponding positions in the SAR image 
time series are the main factors influencing water vapor estimation. 
Large number of water vapor images with discrete distributions in time 
series will increase the estimation precision. In addition, redundant 
observations also can improve the accuracy. 

3.3. The temporal mean of water vapor being zero 

As the One-epoch Known Constraint is a local constraint, Alshawaf 
et al. (2015) adopted the temporal mean of water vapor being zero as the 
global constraint to estimate the non-differential water vapor. We refer 
it as ‘Zero-Mean Constraint’ hereafter. 

According to this constraint, Eq. (3) can be modified to: 
�

Y ¼ AX þ e
GT X ¼ 0 (12)  

where the dimension of GT is 1�M and GT ¼ ð1 =N; 1 =N;⋯; 1 =NÞ and 
Wg ¼ 0. The least squares solution of X in Eq. (12) is 

bX ¼
�
AT Aþ GGT�� 1AT Y (13) 

Since seasonal variations have great effects on the statistics of the 
turbulence atmospheric signals, we should ensure that the starting and 
the ending SAR images of our dataset were obtained in similar seasons. 
Meanwhile, the vertical atmosphere, a function of the surface height, 
may have an effect on the statistics of the turbulence atmosphere. 
Therefore, this constraint does not work well in regions where the 
topography is highly or even modestly uneven. 

More importantly, this method requires a sufficient number of SAR 
images to ensure the whole estimation precision. In summary, the dif
ference between the actual value of temporal mean of water vapor and 
zero is the key factor that affects the precision of water vapor estimation. 
Hence, the larger the number of SAR images, the closer the actual value 
of temporal mean of water vapor to zero, the more interferograms, and 
the higher the water vapor estimation precision. 

4. Non-differential water vapor estimation under new constraint 

4.1. The temporal mean of water vapor being invariant 

As stated in Section 3.3, the Zero-Mean Constraint isn’t suitable for 
the area with strong topographic reliefs, because of the dominant 
stratified atmosphere. Even for flat areas, the number of SAR images and 
extreme weather may lead to a bias in the estimated result. To avoid 
these, we propose a new constraint, the temporal mean of water vapor 
being invariant 

GT X ¼ K (14)  

where K is the temporal mean of water vapor in time series. This 
constraint is referred as ‘Invariant-Mean Constraint’ hereinafter. We will 
develop the method to estimate water vapor under this constraint in the 
following section, and discuss how to evaluate the temporal mean of 
water vapor in Section 6.3. 

4.2. Non-differential water vapor estimation under the new constraint 

Based on the Invariant-Mean Constraint, Eq. (3) can be rewritten as 
�

Y ¼ AX þ e
GT X ¼ K (15) 
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where, the dimension of GT is 1�M and GT ¼ ð1 =N; 1 =N;⋯;1 =NÞ and 
Wg ¼ K. K is the temporal mean of water vapor in time series at each 
pixel. 

Then, the least squares solution of X in Eq. (15) is given as 

bX ¼
�
AT Aþ GGT�� 1�AT YþGK

�
(16)  

with the new constraint (i.e., the Invariant-Mean Constraint), the un
known water vapor at the epoch of each SAR acquisition can be obtained 
by Eq. (16). Meanwhile, it can ensure the whole estimation precision of 
water vapor from TS-InSAR. Furthermore, if there is no error in the 
temporal mean of water vapor in time series, the only factor influencing 
the accuracy is the number of interferogram. 

5. Experiments and analysis 

5.1. Synthetic test 

5.1.1. Simulation 
Five independent SAR images are simulated with a spatial dimension 

of 256 pixel� 256 pixel. As the Zero-Mean Constraint method is based on 
the stochastic characteristic of the turbulent atmosphere, we assume the 
research area has no surface height change, and simulate the turbulent 
tropospheric signal for each SAR acquisition by the Kolmogorov turbu
lence theory (Hanssen, 2001; Gonz�alez and Fernandez, 2011; Cao et al., 
2017). As stated in Section 2.1, the deformation phase can be removed 
from the unwrapped interferograms completely, so we neglect the 
ground deformation in the experiment. In addition, we simulate the 
decorrelation noise based on four factors: coregistration induced 
decorrelation, geometric decorrelation, thermal decorrelation and 
temporal decorrelation (Rocca, 2007; Samiei, 2017). Subsequently, 
seven interferograms are generated by differentiating the simulated 
image at master and slave epochs and the corresponding 

Fig. 1. The simulated and estimated PWVs corresponding to the five simulated SAR acquisitions. The black star denotes the reference point. (a)–(e) Simulated PWVs. 
(f)–(j) PWVs estimated under the One-epoch Known Constraint. (k)–(o) PWVs estimated under the Zero-Mean Constraint. (p)–(t) PWVs estimated under the Invariant- 
Mean Constraint. 
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temporal-spatial baseline distribution is the same as the real experiment 
in Section 5.2. Finally, we take the time series of unwrapped phases as 
the input data for the constraint method. Therefore, the phase 
unwrapping error is not considered. 

5.1.2. Non-differential water vapor estimation results 
In view of the One-epoch Known Constraint, without loss of generality, 

we assume the water vapor of the first image is known and the rest are 
unknown. Estimated results based on the three constraints are shown in 
Fig. 1. 

As Fig. 1 shows, all the three constraints retrieve PWVs in time series, 
but the One-epoch Known Constraint generates results (i.e., Fig. 1(f)–(j)) 
with much more noises than the other two constraints (i.e., Fig. 1(k)–(o) 
and Fig. 1(p)-(t), respectively). Meanwhile, the first epochs of the results 
of Zero-Mean Constraint and the Invariant-Mean Constraint (i.e., Fig. 1(k) 
and (p)) contain more noise than the other four epochs. To further 
demonstrate the performances of these three constraints in water vapor 
mapping, we calculate the differences between the simulated PWVs and 
the estimated PWVs based on the three constraints (Fig. 2). 

As presented in Fig. 2, the differences in the third row (i.e., the dif
ferences between the simulated and the estimated PWVs under the 
Invariant-Mean Constraint) are the minimum. Among them, Fig. 2(k) 
contains more noise than the other four epochs (i.e., Fig. 2(l)–(o)), which 
may be due to the first simulated image participated in the least number 
of interferograms, leading to minimum redundant observations. The 
results in the first row (i.e., Fig. 2(a–e)) contain relatively complex 
noises. And there are obvious deviations in the second row (i.e., Fig. 2 
(f–j)). Therefore, the One-epoch Known Constraint and the Zero-Mean 
Constraint have relatively poorer performance than the Invariant-Mean 

Constraint. 

5.2. Real data test 

5.2.1. SAR data and processing 
We select Jeddah, Saudi Arabia, as the experimental area. Most of 

months in this area are very dry except from November to January. This 
is helpful to obtain high-quality MERIS image which is particularly 
vulnerable to be contaminated by cloud and be used for verifying the 
estimations, simultaneously. And five descending Envisat/Advanced 
SAR (ASAR) images were acquired over this region from 27 November 
2007 to 29 July 2008. Seven interferograms with average temporal 
baseline of 70 days and perpendicular baseline of 205 m are generated 
from the five ASAR images (see Fig. 3). Multi-look processing with four 
pixels in range and twenty pixels in azimuth is used to produce in
terferograms with a pixel size of approximately 80 m � 80 m. Subse
quently, the topography phase is removed through the two-pass D- 
InSAR procedure (Massonnet et al., 1993) using an external DEM (30 m) 
from the Shuttle Radar Topography Mission (SRTM). The precise orbit 
information from Delft Institute for Earth-Oriented Space Research is 
utilized to minimize orbital errors. Residual orbit errors are modeled as a 
surface trend and are mitigated from the unwrapped phase. To reduce 
the influence of noise, each interferogram is filtered by the improved 
Goldstein filter (Li et al., 2008). In addition, since the study area is stable 
(Smith, 2012) and the spatial-temporal baseline is small, the deforma
tion phase in this area can be neglected. Furthermore, pixels with 
coherence less than 0.6 are masked out in the time-series analysis to 
ensure a high quality solution. In the end, the residual differential phase 
(i.e., Δϕ in Eq. (17)) in LOS is converted to the differential PWV (i.e., 

Fig. 2. Differences between the simulated and the estimated PWVs (corresponding to the five simulated SAR acquisitions) under (a)–(e) the One-epoch Known 
Constraint, (f)–(j) the Zero-Mean Constraint and (k)–(o) the Invariant-Mean Constraint. 
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Fig. 3. The red rectangle represents the coverage of the ASAR frame (left). Baseline plot of the ASAR acquisitions used in the case study (right). Each node represents 
an ASAR acquisition and each edge connecting two nodes represents the interferogram formed by the two acquisitions. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. The MERIS and the estimated PWVs of the five SAR acquisitions. (a)–(e) MERIS PWVs. The black star denotes reference point in the unwrapped in
terferograms. (f)–(j) PWVs estimated under the One-epoch Known Constraint. (k)–(o) PWVs estimated under the Zero-Mean Constraint. (p)–(t) PWVs estimated under 
the Invariant-Mean Constraint. 
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ΔPWV in Eq. (17)) by (Mateus et al., 2011): 

ΔPWV ¼Π
� λ
4π Δϕ cosθ (17)  

where Π is the water vapor conversion factor, λ is the radar wave length, 
Δϕ is the differential phase, and θ is the incidence angle. 

5.2.2. MERIS data and processing 
The Envisat satellite is equipped with a Medium Resolution Imaging 

Spectrometer (MERIS), which enables the simultaneous collection of 
PWV and SAR data. MERIS final near-infrared water vapor products are 
provided at two nominal spatial resolutions, i.e., 0.3 km for the full 
resolution model and 1.2 km for the reduced resolution mode. Bennartz 
and Fischer (2001) reported that the theoretical accuracy of the water 
vapor retrieval from MERIS could be as high as 1.7 mm under cloud-free 
conditions. However, the MERIS derived PWV is prone to clouds. 
Although the cloud cover is rare in this study area, we can only collect 
five cloudless synchronized MERIS images for this study. We use them as 
the reference in the following analysis and take their average as the 
temporal mean. 

5.2.3. Non-differential water vapor estimation results 
Similar to the synthetic test, we assume the PWV of the first image 

being known and the rest unknown. Then, we use the above generated 
interferograms to build maps of PWV in time series. The PWVs derived 
from MERIS are shown in Fig. 4(a)-(e). The second, third and fourth 
rows of Fig. 4 are the PWVs estimated under the One-epoch Known 
Constraint, the Zero-Mean Constraint, and the Invariant-Mean Constraint, 
respectively. 

As shown in Fig. 4, the estimated PWVs in the second and fourth rows 
are similar to the first row. The PWVs in the third row are relatively poor 
and can hardly reconstruct the true PWVs, indicating that the Zero-Mean 
Constraint does not work well in estimating PWV. The results of the 
fourth row have higher consistency with the first row than the second 

row does on the whole. Therefore, the Invariant-Mean Constraint re
trieves the PWV with the highest accuracy, followed by the One-epoch 
Known Constraint, then the Zero-Mean Constraint results. There are some 
discrepancies between the PWVs estimated under the One-epoch Known 
Constraint, the Invariant-Mean Constraint and by MERIS, especially of the 
fourth image (i.e., Fig. 4(d), (i), (s)). These discrepancies might be 
caused by the cloud masking errors of MERIS. Note that, using a surface 
trend can remove the residual orbital errors, and even some atmospheric 
signals, especially the long wavelength atmosphere. How to completely 
remove the orbit errors from interferograms and has no influence on the 
atmospheric signals needs further research. 

We calculate the differences between the PWV from MERIS and that 
from the three constraints (Fig. 5). As the figure shows, the third row has 
the minimum differences on the whole, followed by the first row. This 
means the result with the Invariant-Mean Constraint are in good agree
ment with MERIS. However, there are obvious deviations in the second 
row, which indicates the bad performance of the Zero-Mean Constraint. 
Furthermore, we find that there is a weak similarity between the PWVs 
derived from MERIS (i.e., Fig. 4(a)–(e)) and the residuals from the 
Invariant-Mean Constraint (i.e., Fig. 5(k)–(o)). It indicates different de
grees of PWV deficit in the estimation by using the Invariant-Mean 
Constraint at each SAR imaging epoch. It might be caused by the identity 
weighting assumed in this research for simplification. 

Fig. 6 shows the histogram of the frequency distributions of the 
differences between the PWVs derived from MERIS and that with the 
three constraints. In the first and third rows, 6(a)–(e) and Fig. 6(k)-(o), 
the differences follow a Gaussian distribution with mean values close to 
zero and standard deviations less than 2 mm. While in the second row, i. 
e., Fig. 6(f)–(j), the differences are larger. In addition, the PWVs under 
the Invariant-Mean Constraint have an average improvement of 42.0% 
and 81.8% over that estimated under the One-epoch Known Constraint 
and the Zero-Mean Constraint, respectively. 

Fig. 5. Differences between the MERIS and the estimated PWVs under (a)–(e) the One-epoch Known Constraint, (f)–(j) the Zero-Mean Constraint and (k)–(o) the 
Invariant-Mean Constraint. 
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6. Discussion 

6.1. Constant bias between the solutions under the Invariant-Mean 
Constraint and the Zero-Mean Constraint 

It is expected that biases would increase between the PWVs esti
mated from TS-InSAR under the Zero-Mean Constraint and Invariant- 
Mean Constraint. However, how large the biases and in what way they 
propagate remain unknown. Hence, we investigate the differences be
tween the results. 

Firstly, according to the least squares solutions under these two 
constraints (i.e., Eq. (13) and Eq. (16)), the difference of the estimated 
PWVs (i.e., ΔX) can be written as: 

ΔbX ¼
�
AT Aþ GGT�� 1GK (18) 

The sum of each row of the real symmetric matrix ðATAþGGTÞ is 1=N, 

so 1
=N is an eigenvalue of ðATAþGGTÞ and the corresponding eigen

vector is ½1;1;⋯⋯;1�. Therefore, N is an eigenvalue of the real symmetric 
matrix ðATAþ GGTÞ

� 1 and the corresponding eigenvector is ½1;1;⋯⋯;

1�. That means the sum of all the elements in each row of ðATAþ GGTÞ
� 1 

is N. In such a case, Eq. (18) can be simplified to: 

ΔbX ¼K (19) 

From Eq. (19), we can see that the bias is a constant and equals to the 
temporal mean. It demonstrates that the Zero-Mean Constraint may lead 
to a constant bias in the estimated water vapor compared with the new 
constraint. Meanwhile, this conclusion can be used to illustrate the 
almost same residuals from the Zero-Mean Constraint method both in 
simulation (i.e., Fig. 2(f)–(j)) and real data experiments (i.e., Fig. 5(f)– 
(j)). Besides, unlike the Zero-Mean Constraint, the performance of 

Invariant-Mean Constraint isn’t affected by the number of SAR images, 
terrain and extreme weathers. 

6.2. Equivalency between the solutions under the Invariant-Mean 
Constraint and the rule of minimum-norm least-squares 

Results of the simulated and real experiments show that the solution 
under the new constraint has a higher accuracy than that under the other 
two constraints. We also calculate the correlations between the PWVs 
estimated under the three constraints and that derived by MERIS 
(Table 1). The correlation value is as high as 0.95 and with an average of 
0.86 between the results under Invariant-Mean Constraint and of MERIS, 
indicating that the PWV spatial distribution estimated under this 
constraint is almost consistent with the MERIS PWV. The equivalent 
values for the One-epoch Known Constraint is lower. Meanwhile, it should 
be noted that the PWV of the first image has been assumed known for the 
One-epoch Known Constraint as stated in Section 5.2.3. Therefore, the 
correlation is as high as 1.00 for the One-epoch Known Constraint case 1, 
as shown in Table 1. The results under the Zero-Mean Constraint has the 
correlation as low as 0.21 and with an average of 0.27, suggesting that 
the results are seriously biased. 

As mentioned in Section 3.1, the constraint should be independent to 
the observation equation (i.e., Eq. (3)). Therefore 

Fig. 6. Histogram of the differences between the PWVs derived from MERIS and estimated under (a)–(e) the One-epoch Known Constraint, (f)–(j) the Zero-Mean 
Constraint, and (k)–(o) the Invariant-Mean Constraint, respectively. 

Table 1 
Correlation between the PWVs estimated under the three constraints and that 
derived by MERIS (corresponding to the five SAR acquisitions).  

Constraint Applied 1 2 3 4 5 

One-epoch Known Constraint 1.00 0.73 0.76 0.53 0.65 
Zero-Mean Constraint 0.26 0.32 0.21 0.27 0.28 
Invariant-Mean Constraint 0.84 0.95 0.94 0.63 0.92  
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A ⋅ G ¼ 0 (20) 

The real-symmetric matrix ATA is not full rank, thus at least one 
eigenvalue of ATA is equal to zero and the corresponding eigenvector is 
RT. So we have 

AT A H¼ hAT A ¼ 0 (21)  

where h equals to zero and is the eigenvalues of the real-symmetric 
matrix. The matrix H is the corresponding eigenvector. Meanwhile, 
according to Eq. (10), bX is WLS solution of X. Therefore, the estimation 
error of parameter X is: 

bx¼ bX � X (22)  

where bx is the estimation error of parameter X: Then, let Z ¼
ðATAþ GGTÞ

� 1, and combine Eqs. (7)–(9), we can get: 

bxT
bx¼ yT AZZ AT yþ wT �GT G

�� 1w (23)  

where y and w is the observation error of Y and Wg , respectively. 
Under the Invariant-Mean Constraint, one gets 

1
N

XN

k¼1
ðXkþ bxkÞ¼

1
N

XN

k¼1
Xk (24) 

It can be simplified to 

1
N
XN

k¼1

bxk¼ 0 (25)  

which is equivalent to: 
8
<

:
GT ¼

�
1
=N;

1
=N;⋯; 1=N

�

w ¼ 0 (26) 

Under this constraint, bxT
bx in Eq. (23) would be the minimum. This 

demonstrates the equivalency between the solutions under the Invariant- 
Mean Constraint and that obtained by the minimum-norm least-square. 
As the other two constraints cannot meet the bxT

bx minimum, their results 
are not optimal. This also proves that the water vapor estimated under 
the proposed constraint has the highest precision. 

6.3. General comparison, model selection and consideration for 
application 

The One-epoch Known Constraint method has great advantages of 
small calculation load and easy programming. But knowing one or more 
epoch’s water vapor is the premise of this method. Furthermore, it 
cannot ensure the global accuracy in time series. Thus, when the number 
of SAR image is limited and the amount of external water vapor is large, 
this method can be used to estimate non-differential water vapor from 
SBAS-InSAR. 

The Zero-Mean Constraint can be used to map the non-differential 
water vapor, if there are a sufficient number of SAR images for a 
given region without any surface deformation. This method also has low 
calculation cost and easy computer programming. But it is easily 
affected by weathers, especially extreme weathers. Besides, as stated in 
Section 6.1, its results have a constant bias. 

As proved in Section 6.2, the Invariant-Mean Constraint provides the 
highest estimation accuracy among these three constraints. In addition, 
it is not influenced by the number of SAR image and the terrain of study 
area. Meanwhile, the calculation of this constraint is also simple. 
However, this constraint also has its drawback, which is the prior 
determination of the temporal mean of the study area. With relatively 
higher spatial resolution and accuracy, spectrometer observations (e.g., 
MODIS and MERIS), especially MERIS, maybe the preferred method to 

obtain the temporal mean of water vapor. However, both MODIS and 
MERIS images are prone to clouds and are only available during the 
daytime. Fortunately, previous studies have shown that numerical 
weather models can be a promising tool for computing the temporal 
mean of water vapor under any weather condition (Wadge et al., 2002; 
Foster et al., 2006; Puyss�egur et al., 2007; Gong et al., 2010; Wang et al., 
2017). Whereas, the initial and boundary parameters for numerical 
weather models need further research to ensure its reliability at all times 
and locations. The free access, daily availability and global coverage 
make the atmospheric reanalysis products be widely used to obtain the 
temporal mean of water vapor. But their spatial resolution is low at 
present. Maybe, we can obtain the temporal mean of water vapor by 
combining atmospheric reanalysis products, GNSS, spectrometer ob
servations and numerical weather models (Chang and He, 2011; Men
gistu et al., 2015; Chen and Liu, 2016). However, the temporal mean of 
water vapor with high spatial resolutions cannot always be obtained by 
these methods. In addition, there are measurement errors in the esti
mated temporal mean of water vapor (i.e., K in Eq. (15)). Therefore, a 
comprehensive study on the influence of the measuring precision of the 
temporal mean on PWVs estimation is needed. In fact, the Zero-Mean 
Constraint is a special case of the Invariant-Mean Constraint. Under this 
case, the error of the temporal mean of water vapor (i.e., K in Eq. (15)) 
equals to the real temporal mean of water vapor in time series, and the 
corresponding error of the estimated non-differential water vapor is also 
equivalent to the real temporal mean of water vapor. 

Several other factors also affect the three constraints. First, the 
number and distribution of interferograms, which affects the matrix A in 
Eq. (3), determine the model and data resolution of time series water 
vapor mapping. Second, even we assume the ground deformation being 
known or can be negligible, the decorrelation noise, the thermal noise 
and the processing noise (e.g., co-registration and unwrapping noise) 
both can influence the precision of the result. At last, we assume that the 
orbital error can be removed by an empirical mathematical model (e.g., 
plane model, quadratic function), so the long-wavelength atmospheric 
signals with a similar trend may be removed, too. To keep the long- 
wavelength atmospheric signals, one option is to use SAR systems 
with reliable orbital parameters (e.g., TerraSAR-X, ALOS-2). The other 
method is to model the differences between ΔPWVInSAR (i.e., ΔPWV 
derived from InSAR) and ΔPWVexternal (i.e., ΔPWV derived from external 
source, such as GNSS, MERIS), and then to compensate the long- 
wavelength atmospheric signals in the unwrapped phase (Pichelli 
et al., 2015; Mateus et al., 2017). 

7. Conclusion 

High spatial resolution atmospheric PWV is important for recog
nizing local variations of the water vapor spatial distribution and may 
contribute to the atmospheric error corrections of certain remote sensing 
applications based on radio frequency measurements. Currently, mea
surements by ground-based and upper-air sounding networks furnish 
the PWV distribution only at a coarse scale, which cannot capture the 
variations of the local water vapor. InSAR technique, however, could 
provide the differential water vapor between two SAR images (i.e., 
ΔPWV) with a high spatial resolution over a wide swath. However, as we 
have pointed out in Section 2, there is rank deficiency when it is used in 
mapping the water vapor corresponding to each SAR image (i.e., the 
non-differential water vapor). 

In this study, we formulate a general framework for non-differential 
water vapor estimation from SBAS-InSAR. After prove that the bias 
caused by the Zero-Mean Constraint is a constant that equals to the 
temporal mean, we propose the Invariant-Mean Constraint and develop 
the corresponding water vapor inversion method to compensate this 
bias. Furthermore, we demonstrate the equivalency between the solu
tions under the Invariant-Mean Constraint and that obtained by the 
minimum-norm least-squares. This indicates that the Invariant-Mean 
Constraint can provide a better estimation than the other two traditional 
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constraints. To make the method more practical and feasible, we discuss 
the possible methods to determine the temporal mean. General com
parison, model selection and specific consideration for the application of 
the method developed are also discussed. 

In summary, the developed general framework for non-differential 
water vapor estimation from SBAS-InSAR can be used to capture the 
small-scale water vapor distribution, with an unprecedented spatial 
resolution and accuracy. Those advantages of this source of non- 
differential water vapor can be applied to numerical weather fore
casting models to enhance the accuracy of their assimilation systems. 
This, in turn, will help to correct the delay affected by non-differential 
water vapor in the space geodetic measurements. 
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