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There are several hotspots of dust production in the central Sahara, the Bodélé Depression
(BD) in northern Chad is considered the largest source of aerosol dust worldwide, with the
fastest Barchan dunes that migrate southwesterly. Less is known about the complex
patterns of dune movement in the BD, especially on a short time scale. Time-series
inversion of optical image cross-correlation (TSI-OICC) proved to be a valuable method for
monitoring historical movements with low uncertainties, high spatial coverage, and dense
temporal coverage.We leveraged ∼8 years of Landsat-8 and ∼6 years of Sentinel-2 data to
capture the dune migration patterns at BD. We used TSI-OICC, creating four independent
networks of offset maps from Landsat-8 and Sentinel-2 images, and forming three
networks by fusing data from the two sensors. We depended on the multi spatial
coherence estimated from Sentinel-1 interferograms to automatically discriminate
between the active and stagnant regions, which is important for the postprocessing
steps. We combined the data from the two sensors in areas of overlap to assess the
performance of the fusion between two sensors in increasing the temporal scale of the
observations. Our results suggest that dune migration at BD is subject to seasonal and
multiyear variations that differed spatially across the dune field. Seasonal variations were
observed with migration slowing during the summer months. We estimated the median for
velocities belonging to the same season and calculated the seasonal sliding coefficient
(SSC) representing the ratio between seasonal velocities. The median SSC reached a
maximum value of ∼2 for winter/summer, while the ratios were ∼1.10 and ∼1.35 for winter/
spring and winter/autumn, respectively. The seasonal variability of the temporal patterns
was strongly supported by the wind observations. Between (1984–1998 and 1998–2007)
and (1998–2007 and 2013–2021), decelerations in dune velocities were observed with
percentages of ∼4 and ∼28%, respectively, and these decelerations were supported by a
deceleration in wind velocities. Inversion of time series provides dense spatiotemporal
monitoring of the dune activity. The fusion between two sensors allows condensing the
temporal sampling up to a weekly scale especially for locations exposed to contamination
of high cloud cover or dust.
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1 INTRODUCTION

In areas that lack vegetation cover and water resources and
exhibit low soil fertility, low rainfall, high temperatures, high
evaporation levels, and high sand availability, effective wind plays
a crucial role in aeolian processes. In several desert areas, the
instability of dunes and sand sheets poses an important threat to
transportation networks, water supply routes, urban areas,
cultural sites, and human activities (Middleton and Sternberg,
2013; Ahmady-Birgani et al., 2017; Ding et al., 2020a).
Monitoring dune migrations in spatiotemporal domains
contributes to a deeper understanding of the aeolian process
and its relationship with environmental changes (Hugenholtz
et al., 2012). Moreover, information on dune migration can be
used as an indicator of the presence or absence of large-scale
trends in windiness over major deserts (e.g., the Sahara Desert),
and these wind trends may influence the global dust budget
(Vermeesch and Leprince, 2012).

Observations with high spatiotemporal resolution are required to
decipher the complex patterns of dune migration (Hugenholtz et al.,
2012). Ground-based measurements offer higher accuracy but
provide sparse coverage in spatiotemporal domains. The
development of remote sensing techniques, including optical and
radar imagery and digital elevation models (DEMs), allows the
investigation of geomorphological changes with dense
spatiotemporal measurements. The majority of studies addressing
the evolution of dune dynamics have been conducted using optical
imagery (Manzoni et al., 2021). Compared to the optical imageries,
the dependency on synthetic-aperture radar (SAR) imagery to
monitor dune migration is not extensive. Previous studies that
employed SAR imagery (e.g., Rozenstein et al., 2016; Gaber et al.,
2018; Ullmann et al., 2019; Manzoni et al., 2021) mainly depended
on interferometric coherence as an indicator of dune and sand sheet
instability. Notably, these coherence-based techniques do not
provide any quantitative representation of dune dynamics,
however, can be used as a proxy for the fine movements of
dunes and sand sheets. Several approaches to optical imagery
have been used to capture information about dune dynamics at
various resolutions, including classical methods and visual
interpretation (e.g., Hereher, 2010; Hamdan et al., 2016), GIS
strategies (e.g., Ghadiry et al., 2012; El-magd et al., 2013), and
optical image cross-correlation (OICC) (e.g., Vermeesch and
Drake, 2008; Hermas et al., 2012; Scheidt and Lancaster, 2013;
Sam et al., 2015; Ali et al., 2021).

With the rapid development of OICC, mapping the surface
displacement of large areas at very high spatiotemporal resolution
is now feasible and reliable (Stumpf et al., 2016). Various types of
data were used to perform such correlations, including optical
and SAR images and DEMs. Optical images were the most
commonly used due to the availability of free archives (Dille
et al., 2021). Co-registration of optical image matching and
correlation (COSI-Corr) (Leprince et al., 2007) is considered
the most widely used method for retrieving surface
deformations due to its excellent performance in terms of
processing time, output variables, and provision of multiple
pre- and post-processing modules (Jawak et al., 2018). COSI-
Corr has been used to monitor various targets, including

earthquakes (e.g., Ayoub et al., 2009; Avouac et al., 2014;
Chen et al., 2020), landslides (e.g., Stumpf et al., 2014; Lacroix
et al., 2019; Yang et al., 2021), glaciers (e.g., Scherler et al., 2008;
Shukla and Garg, 2020; Das and Sharma, 2021), and dunes (e.g.,
Necsoiu et al., 2009; Vermeesch and Leprince, 2012; Hermas
et al., 2019). OICC provides subpixel measurements of surface
deformations with an accuracy of up to a tenth of the ground
resolution (Leprince et al., 2007).

TSI-OICCmeasurements has recently been used tomonitor the
temporal evolution of various targets, including landslides (e.g.,
Bontemps et al., 2018; Lacroix et al., 2019; Dille et al., 2021; Ding
et al., 2021), glaciers (Altena et al., 2019), and dunes (e.g., Ali et al.,
2020; Ding et al., 2020a; Ding et al., 2020b). Bontemps et al. (2018)
were the first to construct a complete network of matching pairs
from 16 SPOT–5 images covering 35 years and inverted it to
monitor landslide deformations. Large differences in solar
angles affected the matching results, leading to seasonal signals,
while large temporal separation affected the temporal decorrelation
(Bontemps et al., 2018; Lacroix et al., 2019). The inversion of the
full network is promising for controlling uncertainties and
improving spatial coverage; however, generating full networks
from the available free archives [i.e., Landsat-8 (L-8) and
Sentinel-2 (S-2)] would increase the computational cost and
data burden. Recently, some studies (e.g., Ali et al., 2020; Ding
et al., 2020b; Ding et al., 2021) have simulated small baseline subset
(SBAS) approaches used in InSAR for application in the optical
image matching domain, selecting only pairs with certain baseline
thresholds. SBAS-based optical image matching mainly aims to
reduce computation times and data burdens (Bui et al., 2020) and
improve the quality of pairs by limiting probable cast shadows,
while achieving higher spatial coverage with lower uncertainty. The
presented SBAS-based optical image matching approach has
shown potential for capturing the temporal patterns of various
targets, including dunes (Ding et al., 2020a; Ali et al., 2020; Ding
et al., 2020b) and landslides (Ding et al., 2021), with low
uncertainty and high spatial coverage.

The Bodélé depression (BD) in Chad is a 133,532 km2

elongated paleolake that is gaining importance as a global
source of mineral dust and a natural aeolian laboratory
because it is considered the dustiest place on the Earth
(Bristow et al., 2009). Barchan dunes are the predominant
dune morphology in the BD, but their geochemical formation
differs between the center and the margins of the BD (Hudson-
Edwards et al., 2014). The crust of the Barchan dunes inside the
depression is composed of diatomite with a lower density than
quartz, which is the major dune constituent along the margins of
the depression. Accordingly, dunemigration is faster in the center
of the BD than elsewhere, and these Barchan dunes are
considered the fastest worldwide (Bristow et al., 2009). The
geomorphological formation of the dunes detected by the two
L-8 frames varied between the two formations (see Figure 1B).
The Barchan dunes in the BD, have been studied using OICC
three times in the existing literature. Vermeesch and Drake
(2008) first used COSI-Corr, along with ASTER images, to test
the performance of the correlation as the temporal separation was
adjusted. They reported the effect of temporal decorrelation in
reducing the signal-to-noise ratio of the results. Vermeesch and
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Leprince (2012) matched seven adjacent optical images from
different sensors to track dune migration over 26 years. They
reported that variations in migration rates were up to 10%,
equivalent to a 0.2% variation in wind speed per year, indicating
stability in wind conditions. Recently, Baird et al. (2019) proposed a
workflow to extract representative dune migration rates by feeding
Landsat-5 data into the correlation engine.

From the existing literature, previous studies at BD have not
provided a complete picture of the behavior of dune migration on
short time scales (i.e., monthly, or weekly). Only the study by
Vermeesch and Leprince (2012) produced long time series of
matching measurements, using seven images covering the period
from 1984–2010. The time-series presented did not provide
information on the behavior of dune migration and associated
wind patterns on a short time scale due to the sparse temporal
samplings. Furthermore, the adjacent paring criterion of
matching images to produce time series fails to provide high
spatial coverage and low uncertainties. Moreover, monitoring the
fast-moving targets requires matching images with short time

separation, however, these short time spans would be affected by
a large fraction of geolocation errors (Fahnestock et al., 2016). To
best monitor the temporal evolution of dune migration with
dense spatial and temporal coverage and low uncertainties, the
application of optical image matching selection and inversion
algorithm is feasible in monitoring the temporal evolution. The
inversion algorithm first selects the appropriate images by
constraining the cloud coverage. However, the number of
available scenes (i.e., cloud-free) is primarily limited by cloud
cover, especially during the rainy seasons prevalent in tropical
regions, resulting in a reduction in temporal sampling. Therefore,
the fusion of two or more sensors is considered feasible in
providing a dense temporal sampling, to reveal the complex
deformation patterns up to a weekly time scale. The main
objectives of the study can be summarized as follows: 1) to
broadly apply the time series selection algorithm from optical
images and inversion to monitor the status of dune activity of the
Bodélé Depression dunes with dense time series in the last decade
(2013–2021), 2) to test the feasibility of merging the matching

FIGURE 1 |Geographical position and geological formation of the study area. Panel (A) indicates the location of the Bodélé Depression. The inset shows the location of
the BD in Africa. The background in panel (A) is amosaic of Landsat-8 false colors. The black rectangles denote the coverage of Landsat-8 (i.e., P:183/R:48 and P:184/R:48).
The blue rectangles denote the coverage of Sentinel-2A/B (i.e., TR33QYV and TR33QZU). The red rectangles represent the dune fields for which we discuss the
spatiotemporal variability inSection 4.6. The red pentagrams represent the reference points used for absolute calibration, while the green triangles represent the points
for which we extracted the temporal evolution of dunemigration inSection 4.5. The three colored polygons in panel (A) represent the overlap areas between Landsat-8 and
Sentinel-2, where we performed the inversion of the fused offset maps. Panel (B) shows the geological and geomorphological formations of Chad. The black rectangle
represents the area shown in panel (A). The green rectangles denote the Sentinel-1A coverage (i.e., descending tracks 07 and 80). Panel (C) shows the location of the BD in
the gap between the Tibesti and Ennedi mountains, and the current coverage of Lake Chad to the southwest. The background is the MODIS surface reflectance.
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measurements from two sensors in condensing the time series
and increasing the redundancy level, and 3) to study the
spatiotemporal variability of dune migration in both seasonal
and decadal changes. The rest of this study is organized as follows:
the description of the geographical and geomorphological
location and the data used are discussed in Section 2.
Secondly, the methodology and rationale employed in this
study are outlined in Section 3. Thirdly, the results and
discussion of the temporal evolution of the Bodélé depression
dunes are discussed in Section 4. After that, reflection on
previous studies and the merit of the optical mage matching
selection and inversion algorithm are investigated. At the end, the
concluded remarks are summarized in Section 5.

2 STUDY AREA AND DATASETS

2.1 Geological and Environmental Settings
of the Bodélé Depression
There are several localized “hotspots” of dust production in the
central Sahara, the most important being the BD in northern Chad
(Goudie and Middleton, 2001; Chappell and Bristow, 2005).
Historically, the BD hosted Lake Mega-Chad, which has now
completely disappeared, exposing the lake sediments to
deflation (Bristow et al., 2009). The BD is considered the largest
source of aerosol dust worldwide; it is a 24,000 km2 area that
delivers about 6.5 million tons of Fe and 0.12 million tons of P to
the Atlantic Ocean and Amazon Basin annually (Bristow et al.,
2009). This can be explained by the following two factors: 1) A
strong surface wind, known as the Bodélé low-level jet (LLJ), is
directed at the BD (Washington et al., 2006). The location of the
depression on the downwind side of the gap between the Tibesti
and Ennedi Mountains on the border with Libya (Figure 1C)

increases the leverage and activity of the northeast trade winds in
the depression. 2) As a sub-basin of the Mega-Chad paleolake, the
BD is a large source of erodible sediments, including lacustrine
diatomaceous Earth (Washington et al., 2006; Warren et al., 2007).
In addition, the area is a sparsely vegetated, hyper-arid region that
provides extreme erodibility (Koren et al., 2006). The sediments
produce white crusts of diatomaceous Earth that are easily mined
and transported by the wind, forming some of the largest and
fastest-moving Barchan dunes worldwide (Figure 1). There are
two types of dunes in the area; the dunes at the edges of the
depression are composed mainly of quartz, while those in the
center contain diatomaceous Earth pellets. It is noteworthy that the
central dunes have higher dune velocities than the marginal dunes
because of their low density (Warren et al., 2007).

2.2 Datasets
2.2.1 Optical Images
We used satellite imagery from the free archives of L-8 and S-2 to
feed into the COSI-Corr correlation engine to capture quantitative
measurement of the dune migration up to 1/10 of pixel size
(Leprince et al., 2007). The two sensors have similar
characteristics in terms of their spectral properties and spatial
and temporal resolutions (Roy et al., 2014; Kääb et al., 2016). We
selected images with low cloud cover (less than 1%), and we have
checked visually the images to avoid the selection of images
contaminated by haze or dust, yielding a total of 168 images: 95
images obtained from two L-8 frames and 73 images from two S-2
tiles (Figure 1A). The temporal coverage of the L-8 and S-2 images
is summarized in Figure 2, while Supplementary Tables S1–S4
provide an inventory of the metadata of the images. Both products
are orthoimages with atmospheric correction of the reflectance
values and geometric correction based on a refined geometric
model. The processing chains of the L-8 products and S-2 data are

FIGURE 2 | Temporal distribution of data used in the study. Landsat-8 frames (P:183/R:48) and (P:183/R:48) (43 and 52 scenes, respectively), Sentinel-2 tiles
(TR33QYV and TR33QZU) (56 and 17 scenes, respectively), and Sentinel–1 descending orbits (07 and 80) (30 and 29 scenes, respectively). The cloud cover threshold
for Sentinel-2 tile TR33QZU was set to 20% due to the cloud and dust. Detailed acquisition information is listed in Supplementary Tables S1–S5.
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considered identical in terms of the radiometric and geometric
corrections, orthorectification, and resampling to a map grid (Roy
et al., 2014; Kääb et al., 2016). We used the panchromatic (band 8)
and NIR infrared band (8a) of S-2 to feed the correlation engine,
according to the recommendations of Ali et al. (2020).

2.2.2 SAR Images
Radar imagery was used to determine themobility of the sand dunes.
In the dune environment, the phase from interferometric synthetic-
aperture radar (InSAR) may not be suitable for tracking the rapid
movement of sand dunes directly (i.e., 50 m/y). Alternatively, we used
the metric of coherence, which represents the degree of similarity

between repeat-pass observations, to map the stability of sand dunes
(Wegmüeller et al., 2000; Ullmann et al., 2019). To provide an
extensive spatial coverage and a stable revisit time (i.e., 12 days),
we used two descending paths (Figure 1B) of Sentinel-1B data in
2019. Details of the images used for interferogram generation are
presented in (Figure 2; Supplementary Table S5).

2.2.3 ECMWF/ERA Interim Metrological Data
We acquired the average monthly U and V wind components for
each year from 2013 to 2021, measured in m/s with a resolution of
0.1 × 0.1 °, from the European Centre for Medium-Range Weather
Forecasts (ECMWF) (Dee et al., 2011). The U and V components

FIGURE 3 | Flowchart of the processing chain. The steps outlined by the blue dashed rectangle represent the processing steps to estimate the multitemporal
spatial coherence. The steps outlined by the red dashed rectangle denote the optical image matching selection and inversion algorithm. The green dashed rectangle
denotes the concept of combining tandem images when merging data from the two sensors.
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represent the eastward and northward components of the wind,
respectively, at a height of 10m above the surface of the Earth. The
two components were combined to estimate the wind speed and
direction. The averagemonthly wind speed and direction values for
a selected region inside the BD for each year are displayed in
Supplementary Figure S1. Also, we acquired the wind records for
selected years (Supplementary Figure S1) from 1984 to 2007 to
validate the comparison of dune velocities between the different
decades in Section 4.5.4.

3 METHODS

Figure 3 shows a flowchart outlining the main methodology and the
structure of this article, including the following four main parts. In
part 1, we used the Sentinel-1 imagery to delineate the stagnant
regions by estimating the mean spatial coherence map (MSC) (see
Section 3.1). We generated a network of interferograms from two
descending tiles covering the study area during (Jan/2019-Dec/2019)
and stacked the coherence maps to estimate the MSC to help define
the stagnant regions. In Part 2, we applied optical image matching
selection and the inversion algorithm to create a time series of dune
movement from 2013–2021. The inversion algorithm involved
several steps: Generation of a network of offset maps from the
selected images, feature tracking of the selected pairs in the COSI-
Corr environment, application of refinement steps to control the
aberrant measurements, before the inversion of the time series we
introduced the fusion between the offset maps of the two sensors,
and post-processing of the inverted results. The fusion between time
series was introduced to address the feasibility of the fusion in
condensing the temporal coverage of time series especially when
images are contaminated by large cloud cover. In part 3, we
investigated the spatiotemporal variability of dune velocities in
seasonal and decadal scales. In part 4, we compared the time
series results from the inversion of each sensor individually and
to the inversion of the fused time series. Additionally, we evaluated
the performance of the inversion algorithm in controlling the
uncertainties, whereas we compared the uncertainties of the
individual offset maps before and after the inversion.

3.1 Multitemporal Spatial Coherence From
SAR Images
Interferogram generation was performed by the InSAR Scientific
Computing Environment (Agram et al., 2016). For each orbital
path, we first generated a co-registered stack using geometrical
co-registration and the enhanced spectral diversity method
(Fattahi et al., 2017). We then removed the contribution of
topography using the 1-arc Shuttle Radar Topography Mission
DEM (Farr et al., 2007). We formed a network configuration that
connected each image with two subsequent acquisitions. We did
not filter the wrapped interferograms further to avoid potential
contamination of the signal. The resultant interferograms were
multi-looked using a 5 × 20 azimuth and range directions. From
the resultant interferograms, we estimated the complex
coherence, which represents the correlation between two SAR
acquisitions (Touzi et al., 1999), as follows:

c �
∣∣∣∣∑N

k�1f kg
+
k

∣∣∣∣���������������∑N
K�1

∣∣∣∣f k∣∣∣∣2∑N
K�1

∣∣∣∣gk∣∣∣∣2√ (1)

where fk and gk are the complex values from the primary and
secondary SAR images surrounding the given pixel with window
size N, and fkg+

k is the complex conjugate operation for each
interferogram. Using the coherence map stacks, the mean value of
the spatial coherence cMSC was estimated to delineate the spatial
coherence in the study area, as follows:

γMSC(i) �
1

2N − 3
∑2N−3

n�1
∣∣∣∣γn(i)∣∣∣∣ (2)

where i is the target pixel, N is the total number of acquisitions,
and cn(i) is the coherence of the interferogram.

We used multitemporal spatial coherence (MSC) as a proxy
for stagnant areas delineation, similar to the method used by
Manzoni et al. (2021). The spatial distribution of the MSC is
displayed in Supplementary Figure S2. The threshold used to
define the stagnant areas in that study was set by trial and error,
whereas we iteratively tested several threshold values from 0.70 to
0.90. The optimum threshold was selected to achieve the best
match with the average annual magnitudes (AAMs) extracted
from the inversion of one rate solution. AAMs were determined
after removing outliers representing the linear velocity of the
dunes. AAMs below 0.5 m/y were assumed to be stagnant. The
threshold MSC used to define stagnant areas was set iteratively to
best match the lower values of the AMMs. Practically, we set the
threshold of the MSC to 0.85 to define the stagnant areas. The
spatial distribution of the active and stagnant areas is displayed in
Supplementary Figure S3.

3.2 Optical Image Matching Selection and
Inversion
3.2.1 Image Selection and Network Establishment
For the selected images (N + 1), a number of pairs can be
generated that is between N≤M≤ N(N+1)

2 (Berardino et al.,
2002). In previous studies (Ali et al., 2020; Ding et al., 2020b),
the baselines of the matching process (i.e., radiometric, temporal,
and spatial baselines) were defined and weighted according to
their effect on the measurement uncertainties as follows: Sun
elevation difference, Sun angle difference, temporal baseline, and
spatial baseline.We estimated the baselines for all possible pairing
combinations and then set the thresholds to limit the choices. The
thresholds were determined iteratively by considering their prior
weights and preserving the network configuration (i.e., the
connectivity of the established networks) (Reinisch et al.,
2017). Increasing the maximum temporal baseline allows more
pairs to be selected; however, it is recommended to limit the
maximum temporal baseline to reduce surface changes and
temporal decorrelations. We set the maximum temporal
baseline to 6.5 and 3.5 years for L-8 and S-2, respectively,
considering the nature of migration in the study area, and the
selected window size. No limits were set for the shortest temporal
baseline to promote good network connectivity. Short temporal
separation values preserve surface changes and are necessary for
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monitoring fast targets; however, they are prone to large
geolocation error effects (Fahnestock et al., 2016). Thus, we
assigned a weighting criterion for the deformation maps based
on their temporal separation (Section 3.2.5). After several trials,
baseline thresholds were determined for both the L-8 and S-2
networks (Supplementary Table S6). Details of the baselines of
all pairs are listed in Supplementary Tables S7–S13.

3.2.2 Optical Images-based Feature Tracking
The selected pairs were matched in the frequency domain of the
correlation engine (COSI-Corr) (Leprince et al., 2007). Such
correlations are generally performed in two steps: 1) a coarse
estimation is provided using large sliding windows, and 2)
subpixel accuracy is provided using smaller windows (Beaud
et al., 2021). Three parameters were determined: the step size,
which determines the spatial resolution of the displacement
maps, and the initial and final window sizes. The optimal
window size was selected after testing several window sizes
and comparing the results in terms of the uncertainty of the
stable targets. The parameters used to complete the matching
process for L-8 and S-2 are summarized in Supplementary Table
S6. These parameters were prepared in text files and fed into the
batch processor of the correlation engine to decrease human
intervention. The ground resolution of the deformation maps was
unified as 60 m by setting step sizes of four and six pixels for L-8
and S-2, respectively. Each deformation map yielded
displacement in the East–West (EW) and North–South (NS)
directions, together with a signal-to-noise-ratio (SNR) map,
which is considered a measure of correlation quality
(Bontemps et al., 2018; Beaud et al., 2021).

3.2.3 Refinement of the Deformation Fields
Prior to the inversion of the offset maps, several filtering
processes were applied to control the uncertainty and help
capture real deformations (Figure 3): 1) The outliers were
discarded. We estimated the yearly migration rates of all the
deformation maps and pixels with SNR≤ 0.90 and velocities
≥ 250m/y were discarded from the EW and NS deformation
maps. 2) Orbital noise was removed from the deformation fields.
The orbital residual usually stems from the orthorectification and
co-registration residuals (Ali and Xu, 2019; Ding et al., 2020b).
Notably, the removal of such orbital errors generally requires the
identification of stable ground. To better identify stable regions,
we used a mask based on the MSC and AAMs (Section 3.1). After
masking the deformable regions, polynomial surfaces were fitted
and then removed from the raw deformations. 3) Absolute
calibration of the deformation fields was conducted. Co-
registration bias is assumed to be a uniform shift in both
directions (i.e., EW and NS) over the entire deformation field
(Friedl et al., 2021). We extracted a small stable area and
estimated the median of the measurements, then corrected the
deformation fields by adding or subtracting the determined
medians (Friedl et al., 2021). 4) Non-local mean filtering was
applied to the COSI-Corr environment to preserve the fine details
of the correlation and control additive white noise (Shukla and
Garg, 2020). This was achieved using the parameters summarized
in Supplementary Table S6.

3.2.4 Preparation of the Fusion Between Two Sensors
The following points summarize the preparation of the fused
deformation maps before inversion (see the green dashed
rectangle in Figure 3): 1) The deformation maps of each sensor
for the overlapping regions were extracted, resampled to a
common geographic grid, and reordered chronologically. 2) The
epochs from the two sensors were merged and reordered, and two
epochs were considered tandem nodes (Usai, 2003) when the
images were separated by less than 5 days. 3) Boundary
adjustment was applied to account for variation in the temporal
span owing to the merging process (Samsonov et al., 2020). The
deformation maps were adjusted by multiplying the deformation
values by the ratio between the new and old-time intervals. 4) The
deformation maps, with identical start and end dates, were merged
using median fusion (Samsonov et al., 2020).

3.2.5 Inversion of Displacement Time Series
We inverted the deformation maps associated with each sensor, and
the overlapping zones between the two sensors, separately. We used
the parameterization of Berardino et al. (2002) to construct the
relationship between the displacement d and the mean velocity
between each adjacent epoch v through design matrix B, according
to Eq. 3. Design matrix B is an M ×N matrix, where each row
contains the time increments between the master and slave of the
pair (Berardino et al., 2002). The mean velocities between adjacent
epochs can be obtained by inverting the matrix (B’PB) where P is
the weight of each deformation map. We performed the inversion
using a pixel-wise strategy with a flexible designmatrix B using either
least-squares inversion (Usai, 2003), according to Eq. 4, or singular
value decomposition, according to Eq. 5 (Berardino et al., 2002),
based on the matrix condition (i.e., full rank or rank deficient). We
restricted the inversion to pixels for which the stack size exceeded a
certain threshold (75%) to strike a balance between ensuring good
spatial coverage and reducing the oscillation of the singular value
decomposition solution caused by a large number of subsets
(Reinisch et al., 2017). We retrieved the pairs by back
substitution after the first round of inversion, and then a second
round of inversion was executed as per Bontemps et al. (2018). For
the fusion between the two sensors, similar inversion procedures
were applied. We determined the weight of each map according to
the assumption that the error of the velocity reaches 0.1 × PS for a 1-
year separation (Mouginot et al., 2017). Consequently, the velocity
expression deteriorates, especially for short-time separations TS,
according to Eq. 6 (Mouginot et al., 2017) (see Supplementary
Table S14). Accordingly, we applied weighting criteria considering
the precision of the estimated velocities. The estimated weights
assigned for each time interval are listed in Supplementary
Table S14.

Bv � d (3)

vLS � (B′PB)−1B′Pd (4)

vSVD � VS+U ′B′Pd (5)

ϵ � 0.1 × PS × 365.25
TS

(6)

where the U is an orthogonal matrix with dimension M ×M,
including the eigenvector of matrix B’PB; the S+ matrix is an
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M ×M diagonal matrix including the singular values of σ i; V is a
matrix with the dimensions of N × N including the eigenvectors
of (B’PB); ϵ is the velocity error; and PS is the pixel ground
resolution. The symbols ′ and −1 denote the transpose and the
inverse of matrix, respectively.

3.3 Post-Processing
We converted the mean velocities between each adjacent epoch
obtained by the inversion into cumulative displacement Dm for
both EW and NS, according to Eq. 7. The values were temporally
related to the first scene (Supplementary Tables S1–S4) and
spatially to the reference points (see Figure 1). The AAM and the
corresponding prevailing migration direction (PMD) were
estimated according to Eqs 8, 9, respectively. After acquiring
the displacement, we applied the following refinement steps: 1)
Masking pixels comes from the inversion of offset maps
belonging to more than two subsets. 2) Masking non-active
pixels using the stagnant mask obtained in previous steps. 3)
Estimating the migration direction at each time stamp and then
applying a median filter with a 3 × 3 window size. 4) Calculating
the Euclidean norm representing the magnitudes. 5) Estimating
the cumulative projected displacements (CPD) by projecting the
displacement of each epoch in the PMD. The projection was
performed by multiplying the magnitude of migration of each
epoch by the cosine of the difference between the migration
direction and the PMD.

Dm � ∑m

i�2viti (7)

�v � (�B′P�B)−1
�B′Pd (8)

PMD � atan(EW
NS

) (9)

where EW and NS are linear velocity in the east-west and the
north-south directions, respectively; �B is a M × 1 matrix
includes the time separation between the master and slave
images for each offset map and �v is the AAM in m/yr.

3.4 Assessment of the Spatiotemporal
Variability of Dune Migration
The BD exhibited large spatial variability in dune migration rates
owing to the presence of different dune morphologies, chemical
formations, and the interactions between wind speed and
topography (Hudson-Edwards et al., 2014). To better capture
the spatiotemporal variability of dune migration, we investigated
four aspects as follows: 1) We compared the AAMs of the active
aeolian features extracted from the L-8 solution with various dune
fields spatially distributed across the study area (see Figure 1). For
each selected dune field, we calculated the median, first and third
quartiles, and interquartile range. We performed two significance
tests (F-test andWelch’s two-sample test) to compare the extent to
which the variance and mean of each dune field were significantly
different compared to other dune fields, as described by Rouyet
et al. (2019). Similarly, the tests were applied to assess the
significance of the PMDs and MSCs. 2) To gain new insights

into the variability of migration rates and direction, we used the
redundancy of the offset maps and extracted the dune velocities
(m/y) from all pairs. We then estimated the geometric mean of all
active pixels associated with each dune field for each deformation
map and extracted boxplots of each dune field representing the
distribution of the geometric mean of the dune velocities between
the different offset maps. The geometricmeanwas used rather than
the normal mean to avoid overestimation as recommended by
Baird et al. (2019). Similarly, we estimated the average migration
direction and the corresponding concentration ratio (CR) of the
active pixels associated with each dune field for all the deformation
maps, according to Eqs 10, 11, respectively.We also drew a boxplot
representing the variability of migration direction to examine the
probable migration directions expected in the study area. 3) We
examined the spatiotemporal variability of migration rates between
different seasons from the inversion of the fused offset maps. We
estimated the median velocity of the velocity values in similar
seasons over the entire time series and estimated the seasonal
sliding coefficients (SSC) representing the ratio of the median
velocities between two seasons. 4) We examined the variability of
dune velocities between different decades, by employing the
matching between three Thematic Mapper images (17/01/1984,
1/12/1998, and 24/1/2007) to capture dune migration in two
previous decades (see Table 1) and compare the results to our
more recent rates (i.e., from 2013 to 2021). We mainly used the
Thematic Mapper instead of the Enhanced Thematic Mapper due
to the failure of Scan Line Corrector (SLC) after May 2003. We
used band 4) of the Thematic Mapper sensor to fed into the
correlation engine as per Baird et al. (2019).

�θ � atan⎛⎜⎝∑i�n
i�1(sin θi)∑i�n
i�1(cos θi)

⎞⎟⎠ (10)

CR � 1
n

�����������������������������⎡⎣∑i�n
i�1 (sin θi)⎤⎦2 + ⎡⎣∑i�n

i�1 (cos θi)⎤⎦2
√√

(11)

where θi is the migration direction at velocity location. θ is the
average direction and CR is the degree of concentration, where it
ranges from 0 to 1.

4 RESULTS AND DISCUSSION

4.1 Network Configurations
In total, 222 and 219 groups of L-8 (183/48, and 184/48) and 295
and 81 groups of S-2 (TR33QYV, and TR33QZU) were matched,
respectively, to generate the deformation networks
(Supplementary Table S15). The temporal distributions of the
selected pairs are shown in Supplementary Figures S4, S5. The
inversion ratio defined by Ding et al. (2020b) ranged from 4.26 to
5.26 for the separated networks. The fusion between L-8 and S-2
at the overlapping regions (see Figure 1) allowed us to obtain
three dense temporal networks; the numbers of pairs are shown in
Supplementary Table S15. The temporal distribution of the fused
networks is attached in Supplementary Figure S6. Owing to the
fusion, the inversion ratio reached a maximum of 5.95, with a
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maximum epoch of 95 time points covering the observation period.
The inversion of the time series was performed pixel-by-pixel using
a flexible design matrix, where only pixels with more offset maps
than the threshold number (Supplementary Table S15) were
considered in the inversion. During inversion, the number of
subsets for each pixel was estimated. The percentages of valid
pixels belonging to up to two subsets are listed in Supplementary
Table S15. Owing to the flexible inversion procedure, the spatial
coverage of the different inversion networks reached 100%, with a
lower limit of 98%.

4.2 Spatial Patterns of Dune Migrations and
Sand Transport
Figure 4 shows the AAMs within the coverage area of the two
overlapping L-8 images. Notably, the AMMs of the L-8 frames
were merged into a mosaic after being spatially linked to the

reference points. Spatial heterogeneity was observed in the dune
migration patterns; a detailed examination of the evidence for
such spatial variability is presented in Section 4.5. It is common
to find considerable geographic variability as a function of surface
characteristics (e.g., vegetation cover, soil moisture, soil
geochemical formation, and particle size), meteorological
factors (e.g., wind speed and stability), and the presence of
human activity. As shown in Figure 4, the maximum velocity
of the aeolian features covered by the two L-8 frames was
44.80 m/y, while the maximum velocities for tiles TR33QYV
and TR33QZU were 53.60 and 68.80 m/y, respectively. In
terms of migration direction, most of the active dune fields
migrated toward the southwest, which is consistent with the
LLJ blowing from the northeast. We focused mainly on the
following two areas in our detailed analysis: area in the BD
and area in the northwest dune field (see Figure 1A). To
better understand the magnitude and directional variability, we

TABLE 1 | Dune migration rates and average migration direction over three observation periods.

Period ID Observation period dd.mm.
yyyy

Active area (Km2) Median celerity (m/y) Average migration direction
(°)

Period 1 17.01.1984–01.12.1998 2,457.47 9.66 240.72
Period 2 01.12.1998–24.01.2007 2,736.85 9.25 237.17
Period 3 16.05.2013–22.07.2021 2,303.28 6.61 238.72

FIGURE 4 | Average annual magnitudes of dune migration for Landsat-8 (A) and two Sentinel-2 images: TR33QYV (B) and TR33QZU (C). The black and red
polygons in panel (A) denote the coverage of TR33QYV and TR33QZU, respectively. The background is light gray canvas© using Esri ArcMap 10.3.
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extracted sand roses from the L-8, representing the frequency
distributions of the AAMs and PMDs of the active aeolian
features within the BD and the dune fields in the northwest of
the study area, as shown in Figure 5. Similar sand roses for the S-2
tiles are shown in Supplementary Figure S7. The active features
in the BD migrated 10.85 ± 4.80 m/y on average toward 244.6° ±
15.26°, while those in the dune fields in the northwest migrated
11.10 ± 4.48 m/y on average toward 266.57° ± 9.16°. On average,
the active aeolian features within the coverage of the TR33QZU
and TR33QYV S-2 tiles migrated 6.88 ± 9.04 m/y toward
237.69° ± 22.13° and 4.69 ± 9.54 m/y toward 235.22° ± 45.60°,
respectively.

4.3 Assessment of Activity Status and Sand
Transport
We used the mask generated by theMSC tomask out the stagnant
areas. Active aeolian features covered approximately 6,100 km2 of
the total area of the L-8 frames, and the spatial distribution of the
active dune fields is shown in Supplementary Figure S3. Active
aeolian features accounted for approximately 1,096 and
2,310 km2 within the depression and in the northwestern dune
fields, respectively, representing 60% of the active area covered by
the L-8 frames. To better capture the abilities of dunes to act as a
source of sand supply, move to support other dune fields resulting

in variability in dune morphology, or move into stable areas and
convert to semi-active/active dune fields, we estimated the area of
encroachment (AE) of sand features and dunes, as described by
Ding et al. (2020b). We divided the ground covered by the L-8
frames into patches of 100 km2, and estimated the AE of each
patch. All sand features and dunes associated with each patch
were included in the AE calculations. The higher the AE, the
greater the ability of the patch to act as a sand supplier. The AEs
ranged from 25 to 4,200 m2/y. The spatial distribution of the
patch AEs is shown in Supplementary Figure S8. The active
dune areas within the BD can encroach approximately ∼530 m2/
y, and the dune fields located in the northwest can encroach
approximately ∼1,330 m2/y. The average PMDs and CRs of each
patch were estimated and displayed in Supplementary Figure S9.
The average PMDs of most of the patches were aligned toward the
southwest and west, although those of some patches were aligned
toward the northeast. The CRs estimated for each patch were
higher in the northwestern dune field, while the patches within
the BD showed less consistency in their migration directions,
revealing large directional variability. This variability within the
BD is consistent with Baird et al. (2019), who reported a median
directional change of up to 39.26°. This considerable variability in
PMDs can be interpreted by the presence of seasonal variations in
the prevailing wind direction, changes in the morphology of the
sand features, and the complexity of the wind regime. Such
directional variability associated for the aeolian features in the
BD may interpret the small AE scored in the BD in compared to
the Northwest dune field.

4.4 Temporal Evaluation of Dune Migration
Patterns
4.4.1 Historical Movement Patterns
We extracted the cumulative displacement time series for 16 sites
spatially distributed across the dune fields covered by the L-8
frames (see Figure 1A). These sites were carefully selected for
their migration rates to represent the migration patterns across
the different dune fields. Themedian and standard deviation were
measured over 3 × 3 adjacent pixels around each point. Our time
series inversion provided continuous monitoring of dune
migration patterns for nearly 9 and 6 years, as shown in
Figures 6,7, respectively. Some of these points were selected in
the overlapping areas between the two sensors, and we compared
the time series extracted from the independent sensors with each
other and with the fusion between the two sensors (Section
4.6.1). Figure 6 shows the temporal evolution of the points (P01-
P08) extracted from the L-8 inversion, whereas points from P09-
P16 are displayed in Supplementary Figure S10. The S-2 time
series results for nine points located in the ground coverage of the
S-2 frames are shown in Figure 7, while the time series results of
these points as extracted from the inversion of the fusion between
the two sensors are shown in Supplementary Figure S11. The
maximummigration rates (∼30 m/y) occurred at points P02, P04,
P07, P13, P14, and P16. The minimummigration rate occurred at
P06 (∼10 m/y). The other nine points showed moderate
migration rates of 15.5–23.5 m/y.

FIGURE 5 | Sand roses illustrating the relationship between dune
migration rates and migration direction for active dune areas in the Bodélé
Depression (A) and the northwestern dune field (B).
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4.4.2 Seasonality of Movement Patterns and
Interpretations
The degree of correlation between the cumulative time series and
the best linear fit (black lines, Figures 6, 7) exceeded 97%, showing

an almost linear increasing trend. However, seasonal signals in the
time series displacements were also observed. To better assess the
seasonality in the temporal patterns, we subtracted the value of the
linear fit from the CPD (Supplementary Figure S12). The

FIGURE 6 | Cumulative projected displacements over time extracted from the inversion of the deformation maps belong to two Landsat-8 frames. The dashed
colored areas in the background represent the different seasons: red, blue, green, and magenta refer to summer, winter, autumn, and spring, respectively. The black
dashed lines denote the best linear fit of the cumulative projected displacement. Red and blue triangles denote the points belonging to the coverage of (183/48) and (184/
48), respectively.

FIGURE 7 | Similar to Figure 6, the time series extracted from the inversion of two Sentinel-2 tiles. Red and blue triangles denote the inversion of pairs belonging to
T33QYV and T33QZU, respectively.
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magnitude of the seasonality reached a maximum of ∼30m/y at
points P02 and P03. The presence of these seasonal signals can be
attributed to the seasonality of the effective wind regime and dust
storms. The seasonality of the dune pattern was supported by
observing the direction of migration in each epoch; epochs with a
migration direction against the PMD experienced a decrease in net
migration. The temporal evolution of the CPDs denoted an inactive
status when the migration direction was aligned in the opposite
direction to the PMD, leading to a decrease in net migration.
Temporally, the dunes experienced lowermigration rates during the
summer months (i.e., June to August). However, the activity status
improved during the winter months, when the dune migration
direction was consistent with the PMD. The ECMWF data (see
Supplementary Figure S1) showed that the wind was from the
northeast in all months except the summer months, when it blew
from the southwest. As for the wind speed, the data also showed that
the speed reached its minimum values in the summer months.
Interestingly, the variability in wind direction was observed in all
years from 2013 to 2020, indicating the presence of seasonal
fluctuations in the wind regime. As the BD is one of the dustiest
places worldwide, dust storms occur frequently, leading to changes
in the sand transport system. Previous studies have reported that
dust storms aremost common in winter because of the northeasterly
direction of Bodélé LLJ. These reports are consistent with the
observed temporal patterns of dune migration and the activity
states extracted from the CPDs. It is assumed that the seasonal
signals observed in the time series are not closely coupled with the
residuals of seasonal illumination, especially in our study area, which
is dry, vegetation-free, and has nearly flat terrain. Consequently, this
seasonal variability may be closely related to the activity of the wind
regime in the study area. Despite the selection criteria applied to limit
the radiometric baselines, which aim to control both seasonal signals
and cast shadows, the probability of finding such seasonal signals is
still present. Moreover, seasonal signals may be a natural
characteristic of dune dynamics owing to the tightly coupled
relationship between wind activity and dune migration. It is
worth noting that dunes are considered complex monitoring
targets compared to glaciers and landslides, as the latter targets
are mainly controlled by gravitational forces and melting conditions
(Stumpf et al., 2016). Such controlling factors allow filtering out
divergent directions from the deformation fields and provide a
strong indication of the quality of the matching results and
inversion (Stumpf et al., 2016). Consequently, in extracting the
time series of dune migration, we paid close attention to the
possibility of such seasonal signals being present within the
temporal patterns. We attempted to control the presence of
divergent seasonal signals through the selection criterion, post-
processing, and the projection of the displacement in the PMD,
to help capture the true temporal patterns.

4.5 Spatiotemporal Variability of Dune
Velocities
4.5.1 Evidence of Spatial Variability of AAMs, MSCs
and PMDs
The AAMs, PMDs, and MSCs were analyzed for the ten dune
fields, as shown in Figure 8. The AAMs varied spatially between

the ten dune fields: 1) The median AAMs value varied from 3.0 to
9.0 m/y, with a maximum value in “Area-10” in the northwest of
the study area, consistent with previous results of high
encroachment areas in the northwest dune filed. The
interquartile values of the active aeolian features varied from
3.85 to 17m/y. 2) The median PMDs varied from
approximately 240–269°, with an interquartile range of
6.2–14.2°, consistent with previous reports of northeasterly
winds prevailing in the study area. 3) The median MSC of the
active features varied from 0.32 to 0.48. The results of the F-test and
Welch’s test are presented in Supplementary Tables S16, S17. The
results show that the hypothesis of no significant difference in the
means and variance between different dune field pairs can be
rejected in most cases, with some exceptions, indicating that the
migration rates and corresponding directions varied significantly
in the spatial domain. The hypothesis of similar AAM means and
variances was accepted for 4 and 3 pairs out of 45 pairs,
respectively. The hypothesis of similar PMD means and
variances was accepted for 5 pairs out of 45 pairs. Interestingly,
the rejection of the hypothesis highlighted spatial variability in the
dune migration patterns, which can be attributed to variability in
geochemical formation, wind energy, sand transport conditions,
dune height and orientation, and wind–topography interactions.

4.5.2 Spatiotemporal Variability in Dunes Velocity
Between Different Offset Maps
Figure 9 shows boxplots of the estimated geometric means of the
active features associated with each dune field extracted from
different offset maps, for both migration magnitudes and
directions. The median of the geometric mean varied from
11.12 to 17.83 m/y, with an interquartile range of
3.07–12.86 m/y. The geometric means extracted from the
AAMs of the same ten dune fields are shown as blue
diamonds in Figure 9A. It appears that the fusion of all
annual rates tends to underestimate the migration rates; the
medians of the geometric means estimated from the AAMs
were lower in all cases. This may be attributed to the fact that
the fusion of offset maps showing different directions would lead
to a reduction in net migration rates. The median of the average
directions of the ten dune fields varied between 236.15° and
269.40° with an interquartile range of 3.21°–19.94°. The large
interquartile range in “Area 1” may be attributed to the presence
of protodunes or sandy patches with variable migration
directions. The median CR ranged from 0.117 to 0.928, with
an interquartile range of 0.095–0.243. It is worth noting that large
CRs indicate the homogeneity of PMDs of active aeolian features
associated with each dune field. In particular, the maximum
variation in migration direction up to 20° corresponds to a CR
of 0.98. The mean values estimated from the PMDs are shown as
black diamonds in Figure 9B. The means of the PMDs were
nearly identical to the medians of the boxplots, demonstrating the
potential of fusion in reliably estimating migration direction.

4.5.3 Spatiotemporal Variability of Dunes Velocities in
Different Seasons
Figure 10 shows the variability of the horizontal velocity for ten
selected points during the measurement period from 2013 to
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2020. The velocity varied during the observation period, with an
almost increasing trend during the winter and autumn months.
The velocities reached a maximum of ∼220 m/y at P13. Although
no clear trend was found to represent the behavior of velocity
variation, seasonal variability was observed in the velocity

patterns of all the points. The seasonal variability in dune
velocity was supported by the wind records extracted from the
ECMWF data (Supplementary Figures S13, S14), where the
wind speed and direction for the ten selected points were
displayed. It was observed that the wind speed showed a

FIGURE 8 | Boxplots of the AAM (A), PMD (B), and MSC (C). The box plots were plotted for 4,000 pixels belonging to ten dune fields (see Figure 1). The outliers
were discarded from the visualization; however, they were considered in estimating the median, and the interquartile ranges.

FIGURE 9 | Spatiotemporal variability of the dune migration rates (A), and directions (B). Box plots represent the variability of geometric means of dune velocities
and the average migration direction of the active aeolian features belonging to each dune field for all the pairs. The blue and black diamonds in (A,B), respectively,
represent the geometric means estimated for the active aeolian features belonging to the AAM and PMD solutions.
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FIGURE 10 | Time series of dune velocities as extracted from the inversion of offset maps belong to Landsat-8 frame 183/48. The blue pentagrams represent the
acquisition epochs. The red lines denote the continuous dune velocities.

FIGURE 11 | Median seasonal velocity at different points belong to Landsat-8 frame 183/48 (A). The seasonal sliding coefficients denote the ratio between the
different seasonal velocities (B).
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fluctuation with lower speeds in the summer months (June to
August). Additionally, the wind directions mainly from the
northeast with variable directions mainly in summer months.
To better capture the seasonal variability in the measured
velocity, we estimated the median velocities for the acquisition
epochs belonging to each season. Figure 11A shows the
variability in the median velocities between different seasons.
Interestingly, the median velocities recorded during the
summer showed the lowest velocities. We estimated the
SSC, which represents the variability of the median
velocities between different seasons (Figure 11B). The
winter/summer sliding coefficient showed the highest
values, ranging from 1.30 to 2.90 with a median of 2.05. In
contrast, the median velocities changed slightly in spring and
autumn compared to winter, and the median SSCs were 1.14
and 1.36 for winter/spring and winter/autumn, respectively
(Figure 11B). The maximum median velocity peaked during
the autumn and winter months. The variability in dune
velocities at different times of year is expected and can be
attributed to seasonal changes in wind strength. The wind
records extracted from ECMWF data between 2013 and 2020
(Supplementary Figure S1) showed that the median monthly
wind speeds from May to September ranged from 1.20 to
3.40 m/s, with the lowest values in the summer months (June

to August). The median wind speed increased up to ∼6.5 m/s in
the winter months. In terms of migration direction, the
medians of the monthly directions ranged from 233.24° to
250.03° for all months except July and August, when they were
44.95° and 32.74°, respectively. The observed seasonal velocity
patterns were consistent with the behavior of the wind regime,
and both were consistent with previous reports of the
prevailing northeasterly LLJ, especially during winter
(Vermeesch and Leprince, 2012).

4.5.4 Spatiotemporal Variability of Dune Velocities
Between Different Decades (1984–2021)
Figure 12 shows the frequency distributions of the magnitude
and direction of the active features within the BD (Figure 1) over
three periods (Table 1). The active features within the BD had a
strong tendency to migrate toward the southwest and south-
southwest; the average migration directions are summarized in
Table 1. The differences between the average directions reached a
maximum of 3.5°, demonstrating the consistency of the dune
migration direction over longer time. Individual examination of
the directional differences (Figure 12D) showed variability in the
directions between periods 1–2 and between periods 2–3
(Table 1), with median differences of 9.45° and 21.4°,
respectively. These individual variations can be attributed to

FIGURE 12 | Frequency distribution of the active dune and sandy patches in the Bodélé Depression for three observation periods: (A) 1984–1998, (B) 1998–2007,
and (C) 2013–2021. Units in (A–C) are in m/y. (D) Histogram of the difference between period 1 and 2 and periods 2 and 3 in terms of magnitude (Right) and direction
(Left).
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the presence of sand features and protodunes, as well as the
formation of new sand features owing to the deflation of sand and
dust storms. The large median directional difference between
periods 2–3may also be owing to the high ground resolution of L-
8, which could capture more detailed information than Landsat-
5. Directional differences of up to 90° may occur owing to change
in morphological interactions and the inability of the correlation
to capture these morphological changes, especially over longer
time intervals. In addition, continuous sand transport and dust
storms may affect sand flux in the BD, leading to the birth of new
dune generations or the conversion of stable fields to active/semi-
active status. The percentage of active areas within the BD ranged
from 26 to 30% of the total area, with the lowest value between
2013 and 2021. The geometric mean velocities ranged from 6.61
to 9.66 m/y, with the lowest values recorded for the most recent
observation periods. Comparatively, Baird et al. (2019) reported
accelerating dune velocities averaging 2.56 ± 12.60 m/y, with
some accelerating aeolian elements moving at more than
20 m/y. Here, a comparison between the migration velocities
recorded in periods 1 and 2 showed nearly stable conditions with
an average acceleration of 0.36 ± 14.20 m/y. In contrast, an
average deceleration of 3.2 ± 15.20 m/y was observed when
comparing periods 2 and 3. To add new insights to the
comparison between migration patterns captured at different
observation periods, we compared the average annual wind
speed with the geometric mean of the migration rates between
similar observation periods. Vermeesch and Leprince (2012)
reported that a 1% increase in wind speed results in a ∼3%
change in dune velocity and associated dust production. The
median annual average wind speeds were 5.24 and 4.84 m/s for
periods 2 and 3, respectively, representing a 7.63% decrease in
wind speed. The percentage decrease in the migration rate was
28.2%. The ratio between the changes in dune speed and wind
speed was approximately 3.50%, which corresponds to the ideal
ratio between wind speed and dune speed. The comparison
showed strong agreement between the wind speed extracted
from the ECMWF and the migration rates estimated from the
image matching. However, despite the good agreement between
the wind speed and dune velocities, dependence on the matching
results rather than the wind speeds could still be considered
valuable because 1) the wind speeds from the ECMWF have a
coarse resolution (i.e., 0.1 × 0.1 °), 2) the matching measurements
can be validated and evaluated, and 3) the matching results
provide indications of the migration rates that can be used in
vulnerability analysis, stability planning, and modeling.

4.6 Validation and Uncertainty Estimation
4.6.1 Cross-Validation
Table 2 summarizes the AAM and PMD values, and the slope of
the linear fit for the points covered by L-8 and the points
overlapped by L-8 and S-2. There are some inconsistencies
between the slope of the linear fit of the CPDs extracted from
S-2 and from both L-8 and the fusion; the medians of the absolute
difference (MAD) reached ∼4.23 and 6.81 m/y for the differences
between S-2/L-8 and S-2/fusion, respectively. The comparison
between L-8 and the fusion showed the worst consistency, with a
MAD of ∼9.25 m/y. These large differences can be attributed to 1) T
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differences in the observation periods in the S-2 time series and
both the L-8 and the fusion time series; 2) the different
performance of the inversion networks (i.e., the different
condition numbers of the design matrices); and 3) the radical
differences in the temporal and spatial resolutions of the sensors
and their orthorectification and co-registration accuracy. With
respect to AAMs, the comparisons between S-2/L-8 and S-2/
fusion showed MADs of ∼7.0 and 6.81 m/y, respectively. The
comparison between the AAMs of L-8 and the fusion showed a
MAD of 0.7 m/y. Despite the stability of the inversion of one rate
owing to large redundancy and good network connectivity, we
noticed a larger differences between the AAMs of S-2 and both L-
8 and the fusion than between L-8 and the fusion. This can be
interpreted by the different observation periods between S-2/L-8
and S-2/fusion. In terms of the PMDs, the directions extracted
from S-2 showed strong agreement with both L-8 and the fusion;
the MAD were 3.4° and 2.7° for S-2/L-8 and S-2/fusion,
respectively. Moreover, the MAD between L-8 and the fusion
was 2.5°. From a detailed examination of the temporal patterns
extracted from the different inversions, we observed that, for
networks with lower temporal sampling (i.e., T33QZU which had
only 17-time epochs owing to cloud and haze constraints), the
cumulative time series showed two increasing trends with almost
stable conditions where no epochs were included (see Figure 7).
In comparison, the inversion of TR33QYV captured more details,
showing almost linearly increasing trends with low seasonality
signals, except for P4 (see Figure 7). However, the fusion between
the two sensors (Supplementary Figure S11) provided higher
temporal sampling that allowed observation of the temporal
evolution up to a weekly time scale. This led to design
matrices with higher condition numbers, consequently
affecting the stability of the inversion. More seasonality was
recorded in the inversion of the merged networks than in the
inversions of either L-8 or S-2. The comparisons between the
different inversions at different points showed some
inconsistencies, especially in the migration magnitudes, but the
migration directions showed higher homogeneity regardless of
the network configuration and the observation period.

4.6.2 Uncertainty Estimation
We used a stable area of 7.25 km2, as shown in Figure 1, to
evaluate the uncertainty of the inverted results. We estimated the
standard deviation of the measurements as an indicator of
uncertainty (Bontemps et al., 2018; Lacroix et al., 2019; Ali et
al., 2021). We captured the effect of the inversion in controlling
uncertainty by comparing the uncertainties of the individual
offset maps before and after inversion (Bontemps et al., 2018).
Figure 13 shows the uncertainties of the individual offset maps
after inversion and the percentage of improvement in the
uncertainties for the L-8 frames. Similar maps for S-2 and the
fusion can be found in Supplementary Figure S15. After
inversion, the uncertainties varied from 0.27 to 1.90 m and
from 0.29 to 1.36 m with averages of 0.70 and 0.62 m for L-8
and S-2, respectively. The percentages of improvement in the
uncertainty after inversion were, on average, 35 and 44% for L-8
and S-2, respectively. We also extracted the uncertainties in the
inverted results of the CPDs; the uncertainties were, on average,

0.95 m and 0.74 for L-8 and S-2, respectively. It is interesting to
note that the uncertainty levels of the inverted results were within
the resolution of the matching technique (i.e., about a fifth to a
tenth of the ground resolution).

4.7 Reflections on Previous Studies
To date, three studies have focused on monitoring dune
migration in the BD using optical image matching techniques
with different image sources and with different study periods.
Vermeesch and Drake (2008) first used a correlation engine with
ASTER images at different time intervals and integrated the
displacements with dune heights extracted from ASTER stereo
images to estimate sand flux. They reported variability in dune
velocities, noting that the velocities were 2.5 times higher between
December 2006 and January 2007 than between October 2005
and January 2007, and attributed this to the presence of the
Bodélé LLJ, which is prevalent during the winter months. A
similar trend was observed in our time series, with the winter and
summer velocities scoring the highest and the lowest velocities,
respectively.

Vermeesch and Leprince (2012) monitored dune acceleration
over a 26-year period between 1984 and 2010 using a matching
procedure along with seven images from different archives. They
used the time series of dune velocities to draw conclusions about
the wind conditions in the Sahara Desert, especially in the
absence of meteorological observations. They reported that
dune velocities of less than 10% over 26 years, equivalent to a
∼0.2% change in wind speed. We believe that the sparse temporal
sampling of the extracted time series (i.e., seven images spanning
26 years) missed many details about dune movement and
seasonal patterns. In our study, due to the dense temporal
sampling, we estimated the median velocity for each season
and found that the SSC of the velocities between winter and
summer scored ∼2 revealing the activity of the wind in the winter
due to the Bodélé LLJ. The effect of acquisition epochs on the
temporal patterns was supported in our study, while the inversion
of the S2TR33QZU offset maps was limited to 17 epochs due to
cloud cover and dust. The inversion showed two increasing linear
trends (see Figure 7) with a plateau in between, lacking provide
details that can be captured in case of dense acquisition dates. In
summary, our study introduced dense spatiotemporal
monitoring of dune dynamics and associated drivers inside
and outside the BD. It is worth noting that detailed studies on
the spatiotemporal patterns of dune dynamics in the BD have
been lacking in the literature.

4.8 Contribution of the Inversion of Optical
Image Matching for Monitoring the Earth’s
Surface
The optical image matching selection and inversion algorithm
provides a valuable tool for monitoring surface processes over
time, with the advantage of reducing uncertainty and enhancing
spatial coverage, especially when using free archives that provide
a huge amount of data with dense temporal resolution (Ali et al.,
2020; Ding et al., 2020b). As free archives of optical imagery
(i.e., L-8 and S-2) offer temporal sampling ranges of 5–16 days,
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the number of available images is inherently limited by cloud
cover, especially in wet seasons in tropical regions (Dille et al.,
2021). Limiting the selection of images to those with no/low cloud
cover to preserve the matching uncertainty (Lacroix et al., 2018)
would affect the number of images and consequently limit the
temporal sampling of the time series. Additionally, slow-moving
targets require large time separation to help measure real
displacement and avoid a large fraction of geolocation errors
in the matching results (Fahnestock et al., 2016). However, long
temporal baselines affect the temporal sampling of the time series
(Dille et al., 2021). Therefore, dependence on the fusion between
the time series of two or more sensors with overlapping temporal
coverage provides a good alternative to increase the temporal
sampling of the time series especially at locations where the
images usually contaminated by cloud or haze and enhance
understanding of the surface process. In this work, we
introduced the fusion of time series from two sensors at
overlapping locations to increase the density of the temporal
sampling. The comparison between the individual time series
from each sensor with the fused time series revealed the potential
of the fusion of offset maps with similar ground resolutions in
providing dense temporal sampling at up to a weekly time scale.
The fusion procedure avoids the high computational costs and

data burdens associated with the inversion of a full network.
However, fusion provides higher inversion ratios, and the
configuration of the network and condition number of the
matrix should be considered to preserve the quality of the
inverted results. The density of the temporal sampling of the
time series can, therefore, be improved by matching images from
different sensors, considering the effect of the radiometric
variation of both images (Necsoiu et al., 2009). Although the
matching of different sensors would provide a simple framework
for inversion, differences in the radiometric properties and Sun
angles between the two images could affect the quality of the
offset maps. Matching networks created via matching images
from different sensors can be applied to guarantee good
connectivity of the design network and dense temporal
sampling, revealing the complex patterns of surface
deformations.

5 CONCLUSION

In this work, we extended the application of the optical image
matching selection and inversion algorithm using L-8 and S-2
data to gain new insights into the spatiotemporal patterns of dune

FIGURE 13 |Uncertainty of the offset maps after inversion (A) and the percentage of improvement in the uncertainty before and after inversion (B) for the Landsat-8
frame P183/R48. (C) and (D), similar to (A,B) but for the Landsat-8 frame P184/R48. The colored cells represent the pairs with the master on the y-axis and slave on the
x-axis. Each pair is defined by the acquisition dates. The acquisition dates of each frame can be found in Supplementary Tables S1, S2. Units in A and C are in (m) while
(B, D) are percentages.
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migration in the BD during 2013–2021. Images from the L-8 and
S-2 archives with low cloud cover were selected to control
uncertainty and improve spatial coverage. The selected images
were used to generate networks of matched pairs by setting
radiometric and temporal baselines. Using the MSC, stagnant
and moving targets were automatically differentiated. The
inversion was performed using a pixel-by-pixel strategy and
flexible design matrices that covered a large area (up to 98%
of the total area of the two L-8 frames). The AAMs and their
corresponding PMDs exhibited large spatial variability that can
be attributed to various factors such as soil moisture, soil particles,
sand transport, wind energy, and wind–topography interactions.
The PMDs showed a tendency of migration toward the
southwest, which is consistent with the prevailing
northeasterly direction of the Bodélé LLJ. The temporal
patterns of dune migration showed significant seasonal
variation, which can be attributed to the seasonality of the
effective wind regimes and dust storms. The average monthly
wind speeds and directions extracted from the ECMWF showed
that northeasterly winds were predominant in all months except
the summer months. In addition, the wind speed was lowest
during the summer months and highest during winter.
Comparison between the inversions of the different networks
showed some discrepancies owing to the different performances
of the inversions, based on the different networks. Inversion
reduced the uncertainty by, on average, 35 and 44% for L-8 and S-
2, respectively. In addition, fusion between the two sensors
allowed the temporal sampling to be condensed to reveal
complex short-term patterns of surface deformation. The
fusion of two or more sensors would be a promising
alternative for monitoring temporal evolution with dense
temporal coverage, especially in regions with heavy cloud
cover in tropical areas.
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