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A B S T R A C T

Sand dune migration poses a potential threat to desert infrastructure, vegetation, and atmospheric conditions.
Capturing the patterns of long-term dune migration is useful for predicting probable desertification issues and
wind conditions across vast desert areas. In this study, we employed optical image matching and a singular value
decomposition approach to estimate the rates of dune migration in the North Sinai Sand Sea using the free
Landsat 8 and Sentinel-2 archives. Our optical image matching time-series selection and inversion (OPTSI) al-
gorithm limited the difference in the solar illumination of correlated pairs to decrease shadows and seasonal
variability. We found that the maximum annual dune migration rates were 9.4 m/a and 15.9 m/a for Landsat 8
and Sentinel-2 data, respectively, and the results of time-series analysis revealed the existence of seasonal
variations in dune migration controlled by wind regimes. The directions of sand movement extracted from the
mean velocity solution agreed strongly with each other and with the drift directions estimated using wind data
from meteorological stations. We assessed the uncertainty of each solution based on the variance of stable areas.
Our results showed that the proposed inversion decreased uncertainty by up to 25% and increased the spatial
coverage by up to 20%. This algorithm is also promising for the retrieval of historical time series on the ground
displacements of glaciers and slow-moving landslides employing free archives that provide high-frequency
images.

1. Introduction

Sand covers approximately 25% of Earth’s desert regions, where
sand dunes are the most common landforms (Ghadiry et al., 2012), and
migratory dunes pose hazards to infrastructure projects in vast deserts
(Al-Mutiry et al., 2016; Bruno et al., 2018; Dabboor et al., 2013; Gad,
2016). Over the long-term, sandstorms can affect the health of vege-
tation and lead to desertification (Ahmady-Birgani et al., 2017; Wang
et al., 2003). Dust storms also affect atmospheric conditions, leading to
climatic changes that can impact human health (Middleton, 2019;
Middleton and Kang, 2017). Therefore, monitoring the migration of
sand dunes is important during the planning stages of new cities and the
construction of desert infrastructure (Hermas et al., 2012). Moreover,
dynamic dune information can be used as a proxy for wind direction,
especially in vast deserts where no meteorological records are available
(Vermeesch and Leprince, 2012).

Previous studies involving dune migration monitoring have been
performed using field measurements and remote sensing techniques
(Hermas et al., 2012; Hugenholtz et al., 2012). Field measurements
provide high accuracy data; however, they are time-consuming, ex-
pensive, and typically focused on a single dune field. Since the 1970s,
and especially since Landsat Thematic Mapper images have been cap-
tured, remote sensing has greatly contributed to the transition from
such field-based studies to studying complex dunes across several as-
pects, such as boundary conditions, dune patterns, hierarchies, and
dune activity (Hugenholtz et al., 2012). Early attempts at remotely
sensing dune migration, either through satellite images or aerial pho-
tographs, were conducted by measuring the distance between two lines
representing the crests of dunes at two different epochs (Hugenholtz
et al., 2012). However, the large spatial areas covered by these mea-
surements in order to extract crest lines from satellite images are ex-
posed to different sources of error arising from sensor geometries,
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topographic shadowing, and different illumination conditions
(Hugenholtz et al., 2012). All of these factors can affect the accuracy
and reproducibility of classical remote sensing solutions. Additionally,
this method has a tendency to result in the overestimation of dune
migration (Hugenholtz et al., 2012). Change detection techniques were
introduced by Mohamed and Verstraeten (2012), who applied write
function memory insertion and red, green, and blue (RGB) clustering
methods to monitor dune dynamics at the scale of dune fields and sand
seas. These techniques allow for a high spatial coverage but they do not
provide a quantitative estimate of dune migration. Some researchers
have highlighted the possibility of using high-resolution digital eleva-
tion models (DEMs), acquired from light imaging detection and ranging
(LIDAR) data, to monitor volumetric changes and dune migration
(Dong, 2015; Reitz et al., 2010). However, the high accuracy that is
obtainable using LIDAR data, is considered costly, especially when
covering large areas.

The coregistration of optically sensed images and correlation (COSI-
Corr) (Leprince et al., 2007) provides an alternative approach to
monitoring dune migration with less human interaction. Vermeesch
and Drake. (2008) first employed such a method to estimate the mi-
gration of barchan dunes in the Bodélé Depression using freely avail-
able Advanced Spaceborne Thermal Emission and Reflection Radio-
meter (ASTER) images. They reported on the efficacy of the technique
to estimate the sand flux during dune migration by integrating hor-
izontal displacements with the dune heights extracted from the stereo-
pairs of the ASTER images. Subsequently, COSI-Corr has been used in
many studies to monitor the migration of terrestrial dunes (Al-Ghamdi
and Hermas, 2015; Al-Mutiry et al., 2016; Baird et al., 2019; Hermas,
2015; Hermas et al., 2012, 2019; Necsoiu et al., 2009; Sam et al., 2015;
Vermeesch and Leprince, 2012) and extraterrestrial dunes (Ayoub
et al., 2014, 2014; Bridges et al., 2012). Necsoiu et al. (2009) employed
a radiometric combination by merging ASTER images with Satellite for
the Observation of Earth-5 (SPOT-5) data, which spanned five years, to
monitor dune migration in the subarctic Great Kobuk Sand Dunes,
Alaska. They proposed the possibility of a radiometric combination of
images from different archives and introduced a robust migration di-
rection scheme to better filter noise, especially for slowly migrating
dunes. Scheidt and Lancaster (2013) validated the results of COSI-Corr
matching using Geographic Information System (GIS) measurements;
their study was conducted to monitor dunes in southern Namibia from
2001 to 2009, employing ASTER images. They tested seven pairs with
different time separation ranges, from 1 to 9.6 years, and found that
pairs with maximum time separations were not effective in retrieving
migration rates, especially when the area under consideration had
dunes with migration rates greater than the spacing between the dunes.
More recently, Baird et al. (2019) investigated the potential of em-
ploying the Landsat archives as inputs to the correlation algorithm
COSI-Corr, where they used Landsat Level-1 Precision Terrain (L1TP)
products, especially Landsat-5 TM to monitor the dune celerity of the
fast moving dune filed in the Bodélé Depression, Chad. They reported
that two main factors are critical in the selection of Landsat scenes as an
input to the correlation algorithm. The first is that the migration rates
should exceed the misregistration errors and the second is the dis-
tribution of the GCPs should be over stable areas.

Monitoring dune migration over time can be considered as a proxy
to the windiness condition over the vast deserts where the metrological
observations are rare. Information on the windiness condition can help
in addressing the activity of the dust storms. Vermeesch and Leprince
(2012) used the historical records of the barchans dune migration as a
proxy to monitor the status of the windiness in Sahara Desert. They
applied the optical image matching employing seven optical images
from different archives (ASTER, SPOT-4, and Landsat 4) and reported
on the stability of the wind regime in Sahara Desert. Ayoub et al. (2014)
introduced a time series to monitor dune dynamics in the Nili Patera
Dune Field employing High Resolution Imaging Science Experiment
(HiRISE) images and applied weighted principal component analysis

(PCA) to decrease noise in the correlated results. They reported on the
seasonal variability of the sand flux and suggested a threshold of sand
motion to be applied for large scale model wind filed.

Several studies have exploited the redundancy of correlated pairs to
decrease uncertainty and enhance spatial coverage using free archives
(e.g., Landsat 7/8 or Sentinel-2) that provide images with high revisit
times (Altena et al., 2019; Bontemps et al., 2018; Dehecq et al., 2015;
Fahnestock et al., 2016; Lacroix et al., 2019). Bontemps et al. (2018)
first introduced the inversion of time series in the optical image do-
main, employing the full redundancy of all possible pairs generated
from 16 SPOT-5 images. A simple least-squares inversion of the design
matrix was applied owing to the full rank associated with the full re-
dundancy. Their proposed algorithm effectively decreased the un-
certainties and enhanced the spatial coverage of the solution. Ad-
ditionally, they recommended the selection of pairs with similar
illuminations to further limit uncertainties. Lacroix et al. (2019) applied
the same rationale as Bontemps et al. (2018) by employing Landsat 8
images to study the spatiotemporal dynamics of slow-moving land-
slides. Their study revealed the existence of seasonal signals associated
with time series results; however, the study area was mountainous and
vegetation-free and they attributed seasonal variations to differences in
the solar illumination of correlated pairs. Altena et al. (2019) used the
product of GoLIVE dataset (https://nsidc.org/data/golive) derived from
Landsat 8 to monitor the spatiotemporal patterns of the glacier velocity
over southern Alaska. They used the least squares inversion to generate
time series and reported on the effectiveness of the method in providing
an overview about the location and the time of glacier dynamic events.

The inversion algorithm introduced by Bontemps et al. (2018) is
considered suitable for commercial satellites with a limited number of
images, but it would not be effective when employing free archives that
provide images with a high revisit time (e.g., Landsat 8 and Sentinel-2),
and the full network combines all pairs without any consideration of the
quality of the images. This can affect the results of such time series,
especially for pairs with higher variability in solar illumination, leading to
seasonal signals, such as those reported by Lacroix et al. (2019). Ac-
cording to our knowledge, there are two other conspicuous gaps in the
existing literature: (1) few studies have included the matching of results
from either Landsat 8 or Sentinel-2 to monitor dune migration while
considering the acquisition geometry, radiometric resolution, and revisit
time of these satellites; (2) higher degrees of redundancy have not been
employed when establishing dune migration time series, which have in-
stead depended upon adjacent pairing schemes (Ayoub et al., 2014;
Vermeesch and Leprince, 2012). Ding et al. (2020) used the free archives
of Landsat 8 and Sentinel-2 to study the spatiotemporal patterns of dune
migration near Minqin Oasis in northwestern China. The method is con-
sidered an extension to the studies related to the inversion of the optical
imagery (Altena et al., 2019; Bontemps et al., 2018; Lacroix et al., 2019).

Here, we propose an optical image matching time-series selection
and inversion (OPTSI) algorithm. This algorithm can be used to auto-
matically select pairs that are less affected by differences in the illu-
mination and inversion of time-series data. We conduct empirical tests
to investigate the relationship between different baselines and un-
certainties. A total of 576 pairs, belonging to different tiles, are shared
in the baseline test. We conclude that differences in the elevation and
azimuth of the Sun are highly correlated with uncertainty, when com-
pared to temporal and spatial baselines. The selection criteria is con-
sidered effective for decreasing the time needed to process all pairs, as
well as the probable seasonal variations associated with differences in
solar illumination. The time series is then inverted using singular value
decomposition (SVD). We apply the OPTSI algorithm to monitor dune
migration in the North Sinai Sand Sea (NSS) using the free Landsat 8
and Sentinel-2 archives. It is worth noting that we use these two sa-
tellites together in order to validate the magnitude and direction of
dune migration by comparing both solutions. Additionally, we compare
the direction of dune migration to the resultant drift directions ex-
tracted from meteorological stations.
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2. Materials and methods

2.1. Study area

The Sinai Peninsula is an arid environment in which the rate of
evaporation exceeds the rate of precipitation. The annual temperature
ranges from ~14.0 °C to ~40.0 °C (Hermas et al., 2012). Such aridity
and high temperatures cause the paucity of vegetation cover observed
and provide a suitable environment for dune activity. The NSS is lo-
cated in the northwestern corner of the Sinai Peninsula (Fig. 1A). It
extends in the north–south (N–S) direction from the Mediterranean
coast and Lake Bardawil to the side slopes of Um Khushaib Mountain. It
extends in the east–west (E–W) direction from the Suez Canal and the
Bitter Lakes to the mountains of El-Maghara and Yelleq. The NSS is
considered the only sand sea outside the Western Desert and the most
complicated dune field in Egypt (Embabi, 2018). All dune patterns and
forms are found in the NSS and they are exposed to highly varying wind
regimes. The wind speed and direction vary both seasonally and by
location. Effective wind speeds> 6 m/s prevail during winter and
spring (Embabi, 2018; Hermas et al., 2012). There are two prevailing
directions in the effective wind regimes: northwest during summer and
spring, and southwest during autumn and winter (ElBanna, 2004;
Embabi, 2018; Hermas et al., 2012).

2.2. Data

2.2.1. Optical images
We used the optical images from the free archives of Landsat 8 and

Sentinel-2 as inputs to the correlation algorithm. All images were
downloaded using the bulk downloader application from the United
States Geological Survey (USGS) website (https://earthexplorer.usgs.
gov/). We used level 1 T images from three orbits of Landsat 8 and level
1C images from one orbit of Sentinel-2 to perform the baseline test
(Fig. 1B). After the baseline test, we generated time series of dune
movement over part of the NSS using 31 images from orbit (P: 176, R:
39) and 31 images from orbit (TR36VU) (Fig. 1C). The Landsat 8 images
cover the period from April of 2013 to March of 2018, while the Sen-
tinel-2 images cover the period from December of 2015 to February of
2019 (Table S1). Both Landsat 8 and Sentinel-2 images were orthor-
ectified using Planet DEM90 (http://www.planetobserver.com) and
DTED Level 1 from the National Imagery and Mapping Agency, re-
spectively (Kääb et al., 2016), which were sufficient for our application.
Both archives have been enhanced in their radiometric resolutions,
where Landsat 8 had 12 bits scaled to 16 bits, compared with the 8 bits
of Landsat 7 (Fahnestock et al., 2016). This enhancement allows for the
improved monitoring of variations in contrast over bright targets, such
as glaciers and dunes (Fahnestock et al., 2016).

Fig. 1. (A) Geographic location of the North Sinai Sand Sea (NSS). The yellow polygon shows the sand dune boundaries. Black stars represent the locations of
metrological stations and black arrows represent the resultant drift directions (RDD) of these stations (Embabi, 2018; Hereher, 2000). (B) Landsat 8 and Sentinel-2
footprints used for baseline tests. Black boxes show the stable areas of each tile used for estimating uncertainty. (C) Landsat 8 and Sentinel-2 footprints used to study
dune movement. The magenta polygon represents the area of interest for Landsat 8, which was used to cut the entire footprint after matching to maintain the same
number of rows and columns in all images. The black rectangle represents the stable area for assessing the uncertainty of both solutions. The green polygon is the
intersection between the two footprints and was used to cross-validate the two archives. The inset shows the geographic location of the study area with respect to
Africa. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.2.2. Surface wind data
Surface wind data from two meteorological stations in our study

area (Bir El-Abd and El-Malease) were acquired from the Egyptian
Meteorological Authority. The recorded wind data were provided on a
mean annual basis from 2013 to 2015. Wind data were measured at
10 m above the ground and arranged into 12 wind speed classes in 12
directions. For each station, the drift potential (DP), resultant sand drift
potential (RDP), and resultant drift direction (RDD) were estimated
(Table S2) through vector analysis of the drift estimated for each of the
12 directions (Hereher, 2018, 2010). Data with velocities< 6 m/s were
ignored, as such velocities are ineffective for transporting sand
(Fryberger, 1979). We used the wind records to generate the sand roses
(Fig. S1), and we compared the RDD extracted from wind records to the
prevailing directions extracted from optical images.

2.3. Methodology

The proposed inversion algorithm included five steps: (1) the au-
tomatic selection of pairs, (2) image correlation, (3) the filtering of
deformation fields, (4) the inversion of time series, and (5) the esti-
mation of uncertainty and cross-validation of the results (Fig. 2).

2.3.1. Baseline test
Optical image matching results were exposed to different sources of

errors, such as topographic shadowing and stripe artifacts, orthor-
ectification and co-registration residuals, and temporal decorrelation
stems from surface variations over time. Some of these errors can be
suppressed before the correlation process to limit the degree of un-
certainty (e.g., orthorectification residuals and the cast shadows). The
orthorectification residuals can be mitigated by matching images from
the same orbit (Kääb et al., 2016). Also, Lacroix et al.(2018) compared
the uncertainties in case of matching images belong to same orbit and
neighboring orbits; they found that the uncertainty in the later

increased by around 27%.
Noteworthy artifacts stem from large differences in illumination

conditions, especially on steep slopes (Bontemps et al., 2018; Ding
et al., 2016; Lacroix et al., 2018; Stumpf et al., 2014). These artifacts
originate from the interaction between light and three-dimensional
(3D) objects; the resulting shadows significantly interact with the to-
pography, thereby affecting the frequencies of satellite images and
confusing the matching algorithm (Lacroix et al., 2019). Bontemps et al.
(2018) recommended matching images from the same season to control
for uncertainties. Meanwhile, Lacroix et al. (2019) reported that sea-
sonal variations were found in their time-series results; however, the
area under consideration was a vegetation-free, mountainous region.
Such seasonal variations often result from differences in illumination
conditions, with rugged topography magnifying these effects. Ding
et al. (2016) defined the term “topographic shadowing artifact” (TSA)
as a function of differences in the elevation and azimuth of the Sun, and
topographic height. They recommended choosing pairs with lower
TSAs to decrease the effect of shadows in correlations.

Temporal baselines have also been discussed as one of the dominant
factors affecting matching results (Dehecq et al. 2015; Fahnestock et al.
2016). Choosing a suitable time separation is considered a dilemma. On
the one hand, it is recommended to select pairs with a short time span
to avoid mismatch-induced noise, which can contaminate correlation
results (Bontemps et al., 2018; Lacroix et al., 2019). However,
Fahnestock et al. (2016) reported that selecting short-span pairs may
lead to an increase in the geolocation error of the results, especially in
cases where there is insufficient displacement. Consequently, balancing
the temporal baseline is critical and depends upon the target under
consideration.

Spatial baselines are not commonly used in optical image matching,
for which the notion was first introduced by Ding et al. (2016), who
defined it as the distance between the geometric centers of the master
and slave images. They reported that selecting pairs with spatial

Fig. 2. Process flowchart of the proposed approach. The method comprises three stages: (1) selection of correlated pairs based on their baseline values, wherein the
baseline relationship with uncertainties is checked before selection; (2) correlation of the selected pairs and filtration of the displacement fields to decrease noise; (3)
inversion of time series, assessment of uncertainties, and validation.

E. Ali, et al. ISPRS Journal of Photogrammetry and Remote Sensing 164 (2020) 106–124

109



baselines of< 200 m is promising for decreasing stripe artifacts, and
could be useful as an alternative to the mean subtraction method fol-
lowed in previous studies (Bontemps et al., 2018; Leprince et al., 2008,
2007). Previously, Bontemps et al. (2018) reported the relationship
between Sun elevation difference (SED) and the uncertainty before and
after the inversion. Also, Lacroix et al. (2018) investigated the re-
lationship between the temporal baseline and the uncertainty in dif-
ferent cases such as neighboring orbits, same orbit, with cloud cover
and free of clouds. Similarly, in this study, we performed an empirical
test to investigate the relationship between different baselines and
uncertainties. We exploited that the study area included a large ex-
tension of mountains in the south; the geological formation is displayed
in Fig. S2. The baselines of the correlated pairs were defined as radio-
metric, temporal, and spatial baselines and the uncertainty of the de-
formation field was estimated based on the standard deviation of the
stable areas.

Three tiles of Landsat 8 (P: 174, R: 39, P: 175, R: 39, P: 176, R: 39)
and one of Sentinel-2 (TR36VU) were included in the baseline test
(Fig. 1B). We selected pairs from metadata files by setting the values of
TSA and spatial baseline (SB), where the TSA could be estimated as a
function of the elevation and azimuth of the Sun in the master and slave
images. We selected pairs with TSA < 0.5*h, where h is the topo-
graphic height, and SB < 200 m. An exception was tile (P: 174, R: 39),
where these values increased to 1*h and 250 m to better investigate the
relationship between the radiometric baselines across the rugged to-
pography covered by this tile. Additionally, pairs generated from the
adjacent pairing criteria were included in this test, where adjacent
pairing was performed by pairing each image with the consecutive one.
Table 1 shows the number of pairs, the criteria for their selection, and
the area of the stable region.

The batch processing of COSI-Corr was used to correlate all pairs
with the parameters and bands discussed in Section 2.4.2. We masked
the stable area according to the displayed polygons (Fig. 1B) and then
the records of these stable areas were filtered out, first, by removing the
pixels with lower signal-to-noise ratios (SNR < 0.95) in both their
E–W and N–S displacements and second, by removing the values out-
side the range of μ ± 3σ. The expected σ from the correlation was 1/10
of the pixel size (Leprince et al., 2008, 2007; Scherler et al., 2008) by
assuming μ = 0; values outside the range of ± 5 m were discarded. We
estimated the uncertainty of each pair as the standard deviation of the
remaining points. Scatter plots of the relationships between the dif-
ferent baselines and the standard deviation were generated. Ad-
ditionally, the percentage of mismatches, as discussed by Necsoiu et al.

(2009), was plotted against the different baselines. Pearson’s correla-
tion coefficients (R2) were used to represent the strengths of the re-
lationships between each baseline and either the uncertainty or the
level of mismatch.

2.4. Optical image matching time-series selection and inversion (OPTSI)
algorithm

2.4.1. Pairing criteria
Our selection algorithm was mainly oriented to select high-quality

pairs to reduce error and time costs. We constructed our selection al-
gorithm on the following five decisive factors:

(a) Limiting the error derived from orthorectification residuals, where
these residuals stem from the vertical errors in the DEM that
translate to horizontal displacements, especially in pairings from
neighboring tiles (Kääb et al., 2016). Previously, Lacroix et al.
(2018) compared the levels of uncertanty when mtaching images in
cases of the same and neighboring orbits and found that the un-
certanity in the later increased by ~27%. Consequently, we mat-
ched pairs from the same tile in our study.

(b) Limiting the cloud cover associated with correlated pairs. Lacroix
et al. (2018) reported on the effects of cloud cover in correlated
images on the resultant uncertainties, and found that they reached a
maximum of ~4 m. Therefore, we limited the cloud cover to< 1%
to decrease the level of mismatch, especially over moving targets
and control the uncertainty.

(c) Limiting the differences in solar illumination between correlated
pairs. The difference in the illumination between correlated pairs
causes shadows and seasonal variations. In previous studies, re-
searchers have recommended the selection of pairs with little var-
iation in illumination conditions (Bontemps et al., 2018; Ding et al.,
2016; Lacroix et al., 2019; Stumpf et al., 2014) to decrease the
associated artifacts. Our baseline test results (see Section 3.1) also
supported limiting the differences in the angle of the Sun to further
limit uncertainty and levels of mismatch.

(d) Limiting the time separation. The selection of a suitable time se-
paration for the correlated images is a problem. The processing of
short- and long-time separations was introduced by Bontemps et al.
(2018), who used a full network to establish time series. Here, we
mixed the processing of short- and long-time separations and lim-
ited the maximum separation based on the maximum displacement
over the study area and the window size used for correlations. It has

Table 1
Information on the baseline test for the different case studies, including the number of pairs shared in the test of different tiles, area of the stable region, method of
pairing selection, and Pearson’s correlation coefficient (R2) between the different baselines and uncertainties in both directions (E–W and N–S). For more details
about the calculation of TSA, please refer to (Ding et al., 2016).

Tiles Pairing criteria Area (km2) No. of Pairs Correlation coefficients

EW NS

SED SAD TB SED SAD TB

Baseline test
L8/P:176, R:39 TSA < 0.50*h & SB < 200 m 3063 60 0.69 0.53 0.26 0.89 0.89 −0.02
L8/P:175, R:39 TSA < 0.50*h & SB < 200 m 7272 66 0.79 0.59 0.33 0.94 0.91 −0.01
L8/P:174, R:39 TSA < 1.0*h & SB < 250 m 9588 98 0.67 0.46 0.48 0.89 0.90 −0.04
L8/P:174, R:39 Adjacent pairing 9588 49 0.68 0.35 0.80 0.85 0.72 0.64
L8/P:176, R:39 3063 30 0.59 0.62 0.46 0.77 0.87 0.53
S2/TR36VU 1086 30 0.23 0.24 0.53 0.18 0.29 0.80
S2/TR36VU TSA < 0.50*h 1086 80 0.08 0.14 −0.09 0.15 0.25 −0.10

Pairs after selection
L8/P:176, R:39 SED & SAD < 10°, SB < 2500 m 1086 90 0.11 0.16 0.51 −0.07 0.10 0.41
S2/TR36VU SED & SAD < 8° 1086 73 0.11 0.09 0.55 0.43 0.29 0.80

SED = Sun elevation difference, SAD= Sun azimuth difference, SB = Spatial baseline, TSA = Topographic shadowing artifact, EW= East West, NS = North South,
L8 = Landsat 8, S2 = Sentinel-2, h = Topographic height.
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been reported that the migration rates over our study area range
from 1 to 27 m/a (Hermas et al., 2012).

(e) Ensuring connectivity of the pairing network. According to the
single baseline subset (SBAS) method applied in interferometric
synthetic aperture radar (InSAR) studies, the selection approach
always makes the images occur in different subsets (Berardino
et al., 2002). Consequently, the conditions of the design matrix are
affected, which leads to the rank deficiency of the design matrix;
the inversion is no longer valid using the least-square scene
(Berardino et al., 2002). Therefore, in our selection, we focused on
ensuring a better condition for the design matrix and less oscillation
of the SVD solution by limiting the number of subsets (Reinisch
et al., 2017).

The selection procedure was applied before downloading the
images. We first downloaded the metadata file of the tile under con-
sideration. The cloud cover was then set to 1% and the SED, SAD, TB,
and SB were estimated for all possible pairs. Finally, the thresholds
were set iteratively to limit the Sun elevation difference (SED), Sun
azimuth difference (SAD), TB, and the number of subsets. The thresh-
olds of the selection algorithm were determined after several trials. The
SED and SAD were set to less than 10° and 8° for Landsat 8 and Sentinel-
2, respectively, while the maximum time separation was set as less than
4.5 and 3.05 years for Landsat 8 and Sentinel-2. The SB threshold was
determined flexibly to adjust the network when we found that there
was no considerable impact of the SB on uncertainty. The SB was set as
less than 2500 m for Landsat 8, while no limitation was set for Sentinel-
2. Consequently, 90 and 73 pairs were selected for establishing the time
series for Landsat 8 and Sentinel-2, respectively. Information on pairs
can be found in (Tables S3 and S4).

2.4.2. Image correlation
The selected pairs were correlated using the frequency correlator of

COSI-Corr (Leprince et al., 2007), which retrieves the horizontal dis-
placement from the phase shift in the low-frequency content, wherein
the software estimates the displacement iteratively in two steps by
applying a variable window size. A large-scale window size maximizes
the correlation between two images, while a small window size pro-
vides a finer estimation of ground displacement (Lacroix et al., 2019).
We employed the panchromatic band 8 (15 m) of Landsat 8 as an input
to the correlation algorithm to better capture the details of the sand
dunes. Sentinel-2 provides a 10-m resolution for the blue (B2), green
(B3), red (B4), and infrared (B8a) bands. We used the near-infrared
band for correlations after testing and comparing the performance of
the four bands (see Supporting Information).

A batch correlator was used to automate the correlation process. To
perform the correlation, several parameters must be selected, including
the initial and final window sizes, the step size, the number of itera-
tions, and the mask threshold. The initial and final window sizes were
selected after performing a sensitivity analysis to investigate the re-
lationship between the window size and uncertainty (see Supporting
Information). We selected a 128 × 64 window size for Landsat 8 and a
64 × 32 window size for Sentinel-2. Step sizes of 4 × 4 pixels for
Landsat 8 and 6 × 6 for Sentinel-2 were selected to ensure similar
ground resolutions of the generated maps. A frequency mask was ap-
plied to ensure the selection of the locations of the cross-spectrum,
where the phase information was valid (Sun et al., 2017). The mask
threshold was set to 0.9, and four robustness iterations were used.

Correlations always produced three maps: E–W displacement, N–S
displacement, and SNR maps. The first two maps represented the dis-
placement in the east–west and north–south directions, respectively,
where positive signs represented displacement toward the east and
north. The SNR map represented a function to evaluate the quality of
the correlation, with values ranging from 0 to 1; higher values were
assumed to represent better matches. The definition of the SNR pro-
duced by COSI-Corr was different from the classic definition, where it

can be estimated as a function of the normalized cross-spectrum and a
weighting matrix for different frequencies (Bontemps et al., 2018).

2.4.3. Filtering of displacement fields
We performed the following four steps to mitigate the effect of the

associated errors originating from orthorectification residuals, co-re-
gistration, and the misalignment of charge couple device (CCD) arrays
(Bontemps et al., 2018; Ding et al., 2016; Scherler et al., 2008):

(a) We discarded the potential outliers by removing pixels with lower
SNRs from both displacement fields (E–W and N–S directions). The
determination of a suitable SNR threshold is critical for balancing
the real deformation while discarding correlation noise. To balance
between removing the mismatches and the spatial coverage, we set
the SNR threshold to 0.9. It is worth noting that removing the pixels
with lower SNR values may inadvertently eliminate the correct
displacement, whereas retaining those with higher SNR values will
retain mismatches (Paul et al., 2017). Then, we removed the out-
liers from the displacement fields outside the range of± 20 m.

(b) The second step involved removing the linear ramps by applying a
polynomial fit to the stable areas and then subtracting the gener-
ated plane from the raw results.

(c) We then removed the associated stripes and jitter artifacts from the
deformation fields. These stripes were mainly caused by the mis-
alignment of the CCD arrays of the sensor (Ding et al., 2016;
Leprince et al., 2008, 2007; Scherler et al., 2008). This step was
performed through the following procedures (Stumpf et al., 2018):
(1) determination of the azimuth angle of the stripes measured from
the north, (2) rotation of all of the deformation fields to be in
vertical alignment, (3) masking of the stable areas, (4) estimation of
the median value of each column in the stable area (Bontemps
et al., 2018), (5) subtraction of the value of each pixel in the column
from the median value of each column, and (6) rotation of the
deformation field back to the original location.

(d) Finally, the remaining values were denoised using a non-local mean
filter (Ayoub et al., 2009).

2.4.4. Time-series inversion
If we have (N + 1) images belonging to the same tile spanning a

period from t t[ , , ]N0 , where t0 is the reference starting date, the se-
lection of pairs will always lead to the location of the images in dif-
ferent subsets, where the number of pairs (M) can be estimated ac-
cording to the following relationship: (Berardino et al., 2002)

+ < < +N M N N1
2

1
2 (1)

The incremental displacement between successive dates can be de-
scribed as:

=d d d[ , .., ]t t ti N1 (2)

and the relationship between the observed matching measurements
( dtj) and the displacements (dti) can be described according to the
following equation:

=d d d ,t IE ISj j j (3)

where the two vectors, IE and IS, are the time indices, as each pair
includes the master image IE( ) and slave image IS( ). It is worth noting
that master and slave are ordered chronologically:

>IE IS and =j M1, , (Berardino et al., 2002), wherein

= =IE IE IE IS IS IS[ , , ] [ , , ].M M1 1 (4)

Consequently, the relationship between the set of M observations
and the displacements can be described as:

=d A dt tj i (5)

Therefore, Berardino et al. (2002) suggested the calculation of the
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mean velocity of displacement between each adjacent time epoch. The
mean velocity can be described as follows:

= = =v v d
t t

v d d
t t

, ,T
N

N N

N N
1

1

1 0

1

1 (6)

From Eq. (2), the relationship between the mean velocity vi, and the
time epochs can be described as follows:

=
= +

=

t t v j M( ) ; 1, ,
i IS

i IE

i i i
1

1
j

j

(7)

Rearranging Eq. (7) to be in matrix form:

=d vB (8)

where Matrix B is an incidence matrix with the dimensions of [M × N],
such that the elements in the matrix are =B j i t t( , ) i i 1 for

+IS i IE1j j and otherwise, 0.
Matrix B is similar to an incidence matrix, wherein the conditions of

the matrix vary according to the configuration of the selected pairs
(Berardino et al., 2002). Design matrix B has two conditions based on
the number of subsets of image acquisitions. First, in the case of all
acquisitions belonging to one subset, B will be an N-rank matrix with a
well (M = N) or over-determined condition (M > N) (Berardino et al.,
2002). In this case, the inversion of matrix B can be obtained in the least
squares sense as follows:

=v d(B B) BT T1 (9)

Generally, the selection procedure affects the temporal acquisition,
which usually do not belong to the same subset. Accordingly, matrix B
is exposed to a rank deficiency, and the term (B B)T 1 is a singular ma-
trix. The relationship between the rank and number of subsets can be
described as follows (Berardino et al., 2002):

+ =N L Rank1 , (10)

where L is the number of subsets.
The pseudo-inverse of the rank-deficient matrix can be obtained by

SVD, and this inverse provides a minimum normal least-squares solu-
tion. The decomposition of matrix B using SVD is as follows (Berardino
et al., 2002):

=B USV ,T (11)

where U is a matrix with the dimensions of [M × M], including the
eigenvectors of V(B B),T is a matrix with the dimensions of [N × N],
including the eigenvectors of B B( ),T and S is a diagonal matrix with the
dimensions of [M × N], including the singular values of i. Matrix S
would have the following form:

= +diagS ( , , , 0, 0)i iN L 1 (12)

Accordingly, the solution of Eq. (8) in the case of a rank deficiency
can be represented as follows:

=v dVS U .T1 (13)

To better consider the effects of decorrelation with time, we applied
the weight, W of each pair based on the time separation between the
master image IE( ) and the slave image IS( ). This weight can be esti-
mated as follows (Lacroix et al., 2019):

=
+

W
t

1
(1 )2 2 (14)

Incremental displacements were acquired by multiplying the mean
velocity between each epoch by the time separation. The inversion was
performed pixel-by-pixel in both the E–W and N–S directions. Because
of the filtering process, some pixels were discarded, leading to partially
stacked pixels. To balance the redundancy level and spatial coverage,
these pixels were included in the inversion if the percentage of the
remaining pixels in the time series was larger than 70% and 75% of the
full stack for Landsat 8 and Sentinel-2 data, respectively.

2.5. Uncertainty estimation

Previously, researchers have evaluated the uncertainty of matching
results depending on their variance over stable areas (e.g., Bontemps
et al., 2018; Dehecq et al., 2015; Kääb et al., 2016; Lacroix et al., 2018).
Lacroix et al. (2019) reported that such evaluations of the uncertainty
over the stable area may be not representative of the uncertainty in all
regions of the image, especially in cases of the heterogeneous mass with
small moving targets. However, the stable area would be useful in case
of the paucity of in situ measurements to assess the uncertainty of the
moving targets. Dehecq et al. (2015) evaluated the uncertainty of
moving glaciers and found that, over the moving targets, the un-
certainty was almost twice that over the stable area, as stated by
Lacroix et al. (2019). We estimated the uncertainty in the deformation
fields based on the standard deviation of stable areas. A stable area of
1086 km2 was selected to be fully covered by the footprints of both
Landsat 8 and Sentinel-2 (black rectangle, Fig. 1C). We compared the
uncertainties of individual pairs before and after inversion following
the same rationale of Bontemps et al. (2018) and estimated the un-
certainty of each pair in three stages: (1) raw pairs, (2) after the filtering
process, and (3) after inversion. We used the points that came from the
inversion of the full stack and then estimated the percentage of im-
provement in the uncertainty thanks to the filtering and the inversion.
To explore the effects of the inversion algorithm and the redundancy
level on uncertainties, we independently compared the cumulative
displacements from both the inversion and non-inversion solutions.
Both solutions provided displacements at the same time epochs,
wherein the latter was performed by matching consecutive images. The
non-inversion results were filtered by applying the procedure described
in Section 2.4.3. To ensure equality in the comparison, we masked out a
similar stable region (Fig. 1C) and then filtered out the records over the
stable area by discarding values outside the range ± 5.0 m. Due to the
filtering process, the number of remaining points varied between dates,
which could affect the comparison depending on the standard devia-
tion. Additionally, the standard deviation would overestimate the un-
certainty, as it does not account for the reduction of error due to
averaging over larger regions (Bolch et al., 2011). The standard error
(SE) can be used as an alternative to estimate uncertainties. According
to the rules of error propagation, we estimated the uncertainty as a
function of the SE, and the mean of the displacement over stable areas
(MED). The error of displacement was estimated as (Sun et al., 2017):

= +e SE MEDstable
2 2 (15)

=SE
STDV

N
off

eff (16)

=N N PS
D2

,eff
total

(17)

where Neff is the number of independent measurements, PS is the pixel
size, and D is the distance of spatial autocorrelation, where D is ap-
proximately 20 times D (Bolch et al., 2011)

2.6. Post-processing

After the filtering process, further smoothing of the results can be
useful for decreasing the effects of seasonal signals encountered in the
results of time series. The incremental time-series maps of both solu-
tions were filtered by applying the direction filter introduced by
Necsoiu et al. (2009). The robust migration direction of each date in-
cluded negative values, wherein the noise level exceeded the signal of
dune movement; we discarded the values of migration at these loca-
tions. We introduced two approaches to analyze the time series of dune
movement. The first was the cumulative mobility of dunes (Section
3.3.1), wherein we estimated the total cumulative movement without
considering the direction of movement. This approach can be
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considered to reflect the total energy of the wind triggered the dune
mobility from the start to the end date. The second approach involved
the cumulative migration of dunes along the prevailing direction (see
Section 3.3.2), wherein we assumed that the dune only had one di-
rection of movement. The mean direction of movement was extracted
for each pixel by applying the azimuth equations after estimating the
E–W and N–S mean velocity maps. After estimating the prevailing di-
rection, we projected the direction of each date into the prevailing di-
rection by estimating the differences between the migration direction of
each date and the prevailing direction. The magnitude of movement
was multiplied by the cosine of the difference between these two di-
rections. The second approach can be considered to reflect the work
done by the wind to force dunes to move along the prevailing direction.
We analyzed time-series trends by capturing dune migration over a
group of points belonging to different morphologies (Fig. 5C). We then
applied a statistical filter to remove outliers, depending on the direction
of dune movement. The time series of both solutions (i.e., Landsat 8 and
Sentinel-2) were compared in terms of the degree of correlation and
standard deviation of the difference between the migration values at
the common epochs.

3. Results

3.1. Baseline test results

Table 1 shows the Pearson’s correlation coefficients between the
uncertainties and the different baselines. For Landsat 8, the radiometric
baselines, especially the SED, displayed a positive linear trend for all
cases in the E–W (Fig. 3A1–B4) and N–S (Fig. 3C1–D4) directions. The
correlation coefficients ranged between 0.23 and 0.79 in the E–W di-
rection and between 0.18 and 0.94 in the N–S direction. A similar trend
for SAD was observed, but with a lower degree of correlation, where the
correlation coefficients ranged between 0.24 and 0.62 in the E–W and
0.29 and 0.91 in the N–S directions. For the Sentinel-2 test, we observed
that the radiometric baseline components, as well as the TB, did not

record any positive linear relationships (Fig. S3). It is worth noting that
observations in the N–S direction displayed a higher degree of corre-
lation with the radiometric baselines than in the E–W direction. These
significant differences can be attributed to the orbit of Landsat 8 being
ordinated along the N–S direction in the study area as reported by
Lacroix et al. (2019).

For Landsat 8, the TB of the selected pairs ranged from 16 d to 1600
d. A slight positive relationship was observed in the E–W direction
(Fig. 4A1–A3), while a negative correlation was observed in the N–S
direction (Fig. 4B1–B3). The correlation coefficients between the TB
and uncertainty ranged between 0.26 and 0.80 in the E–W direction
and between 0.00 and 0.80 in the N–S direction, where the relationship
can be better described by a cyclical waveform with a frequency of
1 year. It is interesting to note that higher correlations between the TB
and uncertainty were recorded for the adjacent pairings of the Landsat
8 tile (P: 174, R: 39), where the time separation ranged from 16 to 128
d. The TB and uncertainty showed a positive linear relationship with
correlation coefficients of 0.80 and 0.64 in the E–W and N–S directions,
respectively (Fig. S4). These strong linear relationships may support
restricting the time separation to limit the uncertainty, as suggested by
Lacroix et al. (2018). However, small time separations lead to increases
in geolocation errors in the displacement field, especially for slow-
moving targets (Fahnestock et al., 2016).

We found that pairs with the same time separation recorded dif-
ferent values of uncertainties, which agrees with the findings of Lacroix
et al. (2018). A detailed investigation of these pairs revealed that for
smaller TBs (16 d), both SED and SAD were lower than 10° and the
uncertainties reached a maximum of 0.75 m in both directions at the
maximum values of SED and SAD. There was no clear linear trend be-
tween either SED or SAD and TB, where the relationship can be better
described by a cyclical variation (Fig. S5). We further explored the
relationship between the radiometric baselines (SED and SAD) and the
uncertainties after imposing the selection criteria. The uncertainties of
both SED and SAD lost a positive linear relationship. However, a
slightly increasing linear trend was observed in the relationship

Fig. 3. Relationship between Sun elevation difference (SED) and Sun azimuth difference (SAD) and uncertainties in the E–W direction (A1–B4) and N–S direction
(C1–D4). Different rows represent different case studies from top to bottom (P: 174, R: 39; P: 175, R: 39; P: 176, R: 39; and P: 174, R: 39 adjacent pairs). The black
lines represent the best linear fits.
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between TB and uncertainty (Figs. S6 and S7). It can be concluded that
when the differences in solar illumination were limited, the TB began to
control the uncertainties, which would support applying pair-based
weight according to the time separation of each pair to better include
the pairs in the time series as recommended by Lacroix et al. (2019).
The relationship between the mismatches and baselines revealed that
the SED and SAD were<10°, leading to mismatch levels of< 10%
(Fig. S8), which would support limiting the values of SED and SAD to
control the mismatches level and enhancing the spatial coverage. The
relationship between SB and uncertainty is shown in Fig. 4C1–D3,
wherein SB shows the weakest relationship among the four baselines.
However limiting the spatial baseline to smaller values (< 200 m) as
recommended by Ding et al. (2016) would be useful in decreasing the
stripes artifact comes from the misalignment of CCD arrays, especially
for tiles without sufficient extension of stable targets to perform the
stripes artifact corrections.

3.2. Spatial analysis of dune patterns

The NSS comprises different dune morphologies, including barchan,
linear, and transverse dunes. Linear dunes are the most common
landform in the eastern part of the sand sea near the Bitter Lakes. To the
east of the mountainous region, the wind regime is bidirectional and
both barchan and transverse dunes are present (Hermas et al., 2012).
Previous studies (Embabi, 2018; Hermas et al., 2012) have shown the
variability of linear and barchan dune migration over the NSS. Linear
dune migrations range from 0.7 m/a to 27 m/a, while those of barchan
dunes range from 3.6 m/a to 17.3 m/a (Hermas et al., 2012). These
large variabilities in dune migration are attributed to the different
techniques used for capturing them, as well as the dune type, dune size,
duration of measurement, and study period (Hermas et al., 2012).

Long-term annual rates of dune migration were extracted from
Landsat 8 over the period from April of 2013 to March of 2018 and from
Sentinel-2 from February of 2015 to December of 2019. Fig. 5 shows the
spatial variability of the mean annual rates extracted from both

solutions, where the migration rates ranged from 0.5 to 9.4 m/a for
Landsat 8 and from 0.5 to 15.6 m/a for Sentinel-2. The lower limit was
set to be 0.5 m/a, as we discarded pixels showing changes of less than
0.5 m/a and considered them as interdune areas, which were defined as
areas that do not experience significant migration rates. We extracted
the migration rates of each dune morphology based on the polygons
displayed in Fig. 5C. The mean net migrations of the linear dunes were
1.57 m/a and 1.63 m/a for Landsat 8 and Sentinel-2, respectively, while
for barchan dunes, they were 1.22 m/a and 1.36 m/a. Maximum mi-
gration rates were captured in the southern part of the study area
(white box in Fig. 5), where linear dunes had mean net migrations of
4.14 m/a and 4.44 m/a for Landsat 8 and Sentinel-2, respectively. We
extracted the mean migration direction for each pixel by applying the
azimuth equations to the mean annual rates for both the E–W and N–S
directions. It can be seen that the migration directions were mainly
toward the east and northeast. An exception was seen in the area en-
closed by the white rectangle in Fig. 5, where the dune migration di-
rection was toward the south; this area included linear dunes arranged
parallel to the N–S direction. The prevailing directions are consistent
with previous reports on prevailing dune migration directions in this
region (Embabi, 2018; Hermas et al., 2012)

3.3. Time series analysis

3.3.1. Cumulative dune mobility
Fig. 6 shows a comparison between the cumulative displacement

captured by Landsat 8 and Sentinel-2 at different locations (see also
Fig. 5C). The time series of both solutions were interpolated in the
overlapping periods to obtain the values of dune migration at the
overlapping time epochs. The Sentinel-2 epochs were then shifted up-
ward with a value equal to the perpendicular distance between the two
linear fits of both solutions (magenta and green lines). We investigated
the standard deviations of the differences between both solutions, and
the values ranged between 1.94 m and 2.88 m. Moreover, the corre-
lation coefficients between the overlapping epochs for all cases

Fig. 4. Relationship between time separation and uncertainty in the E–W direction (A1–A3) and N–S direction (B1–B3), and spatial baseline and uncertainty in the
E–W direction (C1–C3) and N–S direction (D1–D3). Different rows represent different case studies from top to bottom (P: 174, R: 39; P: 175, R: 39; and P: 176, R: 39).
The black lines represent the best linear fits.
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exceeded 0.97, which indicates a strong agreement between the trends
captured by both solutions. This robust correlation reveals that both
solutions captured the same trends of dune migration. Through a de-
tailed investigation of the time series, we found that both solutions
experienced variations in the trend of dune movement over time, where
the trend varied between being stable, sharply increasing, moderately
increasing, and decreasing. This variability in the temporal trend is also
supported by previous reports of large variability in wind speed and
direction (Hermas et al., 2012).

The slope of the linear fit extracted by the least squares method can
be used to describe the yearly movement rate at each locations.
However, it cannot be considered as the migration rate of dunes, as this
approach does not consider the variability of the direction of dune
movement through the time series. The rates of movement ranged from
4.79 to 12.95 m/a for Landsat 8 and between 8.36 and 13.25 m/a for
Sentinel-2. It is worth noting that the comparison between both solu-
tions was exposed to several sources of noise, including the difference
in the performance of the correlation algorithm when correlating
Landsat 8 and Sentinel-2 because of their spatial and radiometric re-
solutions, the performance of the inversion algorithm owing to differ-
ences in the redundancy levels of the pairing networks between Landsat
8 (90/30) and Sentinel-2 (73/30), and the complex wind regime of
dune migration in the study area.

3.3.2. Cumulative dune migration along the prevailing direction
Fig. 7 shows the cumulative time series of the same dune

morphologies as in Fig. 6, but considers one direction to represent dune
migration. The linear fit of each solution was estimated using a least
squares approach, wherein the migration rates along the prevailing
direction ranged from 1.97 to 2.92 m/a for Landsat 8 and from 1.63 to
3.30 m/a for Sentinel-2. It is worth noting that negative values in-
dicated the epochs in which the migration direction was opposite to the
prevailing direction of movement. This occurred when the difference
between the migration angle and the prevailing migration angle ranged
between 90° and 270°. We also observed significant differences between
the cumulative migration with and without consideration of the di-
rection due to variability in the migration direction between different
epochs. The projected cumulative displacements along the prevailing
movement direction can be assumed as the work done by wind to
trigger barchans dunes to migrate and linear dunes to elongate, where
the dune dynamic patterns are mainly controlled by the prevailing wind
direction. Furthermore, seasonal signals were still encountered in the
results of the time series, regardless of the selection criteria, inversion
method, and post-processing technique. These seasonal signals were
assumed to express the nature of the dune patterns in the study area,
and this assumption is supported by previous reports on the variability
of the wind regime in northern Sinai (Hermas et al., 2012). The pre-
vailing wind directions in the NSS are to the northwest, north, and
northeast, and the wind direction also varies seasonally.

Fig. 5. Map of the mean annual rates (m/a) of: (A) Landsat 8 and (B) Sentinel-2. The black arrows in both figures represent the direction of movement extracted at a
spatial resolution of 25 × 60 m using the vector field module embedded in COSI-Corr. (C) shows the spatial distribution of the morphological units and the points
used to compare the time series (Section 3.3). The morphological units are credited to Hermas et al. (2012). The white rectangle represents the southern area
mentioned in the text, while the magenta rectangle represents the boundary of the morphological units displayed in (C). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Comparison between the cumulative time series of both Landsat 8 and Sentinel 2 solutions. The direction of movement was not considered in this calculation.
The error bars were calculated following the same concept introduced in Section 2.5. The blue areas in the panels represent the ovelap epochs. The green and the
magenta lines represent the best linear fits of Landsat 8 and Sentinel-2, respectively. Each panel represents different dune morphologies at different locations (see
Fig. 5C), where (A) = stacked sheet, (B) = barchan dune, (C) = linear dune, (D) = barchan dune, (E) = linear dune, and (F) = long linear dune.

Fig. 7. Comparison between the cumulative time series of both Landsat 8 and Sentinel 2 solutions. The direction of movement was projected along the prevailing
direction. The black and the blue lines represent the best linear fits of Landsat 8 and Sentinel-2, respectively. Each panel represents different dune morphologies at
different locations (see Fig. 5C), where (A) = stacked sheet, (B) = barchan dune, (C) = linear dune, (D) = barchan dune, (E) = linear dune, and (F) = long linear
dune.
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The study area is exposed to pronounced variations in the percen-
tage of the effective wind regime with different seasons, which is
considered effective for transferring sand particles (Hermas et al.,
2012). The temporal pattern of the dune migration recorded over dif-
ferent morphologies is useful for interpreting the conditions of sand
dunes over time and hence in predicting climatic changes and atmo-
spheric conditions; however, this should be validated using the monthly
values of the RDP/DP extracted from wind data. Unfortunately, such
monthly values are not available for interpretation in the study area.
Additionally, medium-resolution matching results of dune migration
may be insufficient, especially when focusing on a single dune field.

3.4. Uncertainty estimation

3.4.1. Pair-based uncertainty
Figs. 8 and 9 show comparisons between the levels of uncertainty

before filtering, after filtering, and after inversion for Landsat 8 and
Sentinel-2, respectively. It can be seen that the uncertainties for both
Landsat 8 and Sentinel-2 raw pairs after removing the outliers were
within the range of the COSI-Corr accuracy at 1σ, which ranges from 1/
10 to 1/5 of the pixel size (Leprince et al., 2008, 2007). However, some
pairs had much higher uncertainties that exceeded 1.5 m in both di-
rections for Landsat 8. A similar finding was observed for some Sen-
tinel-2 pairs, especially in the N–S direction. The filtering process re-
duced the uncertainties on average by 25% and 24% in both directions
for Landsat 8 and Sentinel-2, respectively. The uncertainties after in-
version ranged from 0.32 to 0.99 m in the E–W direction and from 0.33
to 1.02 m in the N–S direction for Landsat 8. For Sentinel-2, they ranged
from 0.20 to 0.60 m in the E–W direction and from 0.40 to 1.50 m in the
N–S direction. Inversion decreased the uncertainties by 20% on average
in both directions for Landsat 8 and by 33% and 27% in the E–W and
N–S directions, respectively, for Sentinel-2.

3.4.2. Solution-based uncertainty
3.4.2.1. Cumulative solution uncertainty. Fig. 10 shows the comparison
between the inverted and non-inverted solutions in terms of the root

mean squared error (RMSE). For Landsat 8, the RMSEs were 3.2 m and
4.1 m in the E–W and N–S directions, respectively, for the inverted
solution, while for the non-inverted solution, the RMSEs were 5.0 m
and 5.7 m. For Sentinel-2, the RMSEs were 2.24 m and 2.75 m in the
E–W and N–S directions, respectively, for the inverted solution, while
for the non-inverted solution, they were 2.94 m and 3.20 m. Further
investigations were conducted depending upon the error of
displacement in which, for Sentinel-2, the mean errors of
displacement over the entire time series were 0.19 m and 0.82 m for
the inverted and non-inverted solutions, respectively. It is worth noting
that displacement error is considered efficient, as it takes into
consideration the number of points, the mean of the records, and the
standard deviation. The dependence on the standard deviation is
considered ineffective, especially for data with a skewed distribution,
as the records are no longer distributed normally around a mean.

3.4.2.2. Mean velocity uncertainty. We assessed the uncertainty of the
mean velocity solution based on the standard deviation of the stable
areas (Fig. 1C). The histograms of the noise over the stable area are
shown in Fig. 11D and E. It is notable that the noise histogram displays
an approximately Gaussian distribution and does not have a Rayleigh-
like shape; this provides evidence that the mean velocity solution is an
unbiased measurement, as reported by Necsoiu et al. (2009). The mean
of the records was almost zero, with a standard deviation of 0.15 m/a
and 0.13 m/a in the E–W and 0.13 m/a and 0.12 m/a in the N–S
directions for Landsat 8 and Sentinel-2, respectively. It is clear that the
recorded uncertainties with the inversion of one rate were less than the
uncertainties in the case of an incremental solution for both Landsat 8
and Sentinel-2, where the average standard deviation over all dates
records values of 0.63 m and 0.36 m for Landsat 8 and Sentinel-2,
respectively. This supports the previously reported effects of
redundancy on uncertainty. These findings also agree with those of
Dehecq et al. (2015), who reported that increasing the number of pairs
leads to decreasing the uncertainties.

Fig. 8. Uncertainty values before filtering, after filtering, and after inversion of each pair for Landsat 8 data in the: (A) E–W and (B) N–S directions. Improvement
percentage in uncertainty after filtering and inversion of each pair for Landsat 8 data in the: (C) E–W and (D) N–S directions.
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3.5. Validation

We compared the long-term mean migration from Landsat 8 (15 m)
and Sentinel-2 (10 m) to validate our results. Significant spatial varia-
bility among the migration rates existed in the study area (Hermas
et al., 2012); the range of variation captured in previous studies was
1–27 m/a. Such a wide range of migration rates can be attributed to the
variability of the wind speed and direction, duration of the

measurements (i.e., the capture interval), and time interval over which
the measurements were performed (i.e., the study period) (Hermas
et al., 2012). Nevertheless, it is interesting that similar trends of dune
migration rates and patterns were observed, with an increase in the
rates recorded in the Sentinel-2 solution (Fig. 11). The differences be-
tween the two solutions can be attributed to the different periods used
to generate their mean velocities. A cross-comparison between them at
common points (see intersection in Fig. 1C) reveals a positive linear

Fig. 9. Uncertainty values before filtering, after filtering, and after inversion of each pair for Sentinel-2 data in the: (A) E–W and (B) N–S directions. Improvement
percentage in uncertainty after filtering and inversion of each pair for Sentinel-2 data in the: (C) E–W and (D) N–S directions.

Fig 10. Comparison between the root mean squared errors (RMSEs) of the inverted and non-inverted solutions for: (A) Landsat 8 and (B) Sentinel-2.
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relationship with correlations of 0.80, 0.89, and 0.85 for the E–W di-
rection, N–S direction, and magnitude, respectively (Fig. 11). Ad-
ditionally, the RMSEs of the differences between the results of both
solutions were 0.44, 0.59, and 0.57 m/a for the E–W direction, N–S
direction, and magnitude, respectively.

In terms of the direction of movement, the histogram shown in
Fig. 11F reveals the frequency of the movement of both solutions. The
direction of movement displayed a bimodal distribution with two
peaks: the first at ~55° and the second at ~155°. These agree with the
spatial distribution of the direction of movement, wherein the major
direction was toward the east and northeast in all locations. An ex-
ception was observed in the southern NSS (white rectangle in Fig. 5C),
where the direction of movement was toward the southeast.

To further investigate the spatial variability and the agreement
between the two solutions, the migration rates across six transects at
different locations (Fig. 5C) were extracted and compared. Fig. 12 il-
lustrates the migration rates along different transects from P1–P6.
These transects differed in length and passed through different dune
morphologies. It can be seen that the location of the interdune areas
(low migration rates) and areas of dune crests (high migration rates)
can be identified clearly for profiles passing through the barchan and
linear dunes. It is also interesting to note that almost the same trend of
dune migration was captured; however, the rates of migration recorded
by the Sentinel-2 solution were higher than those of Landsat 8. The
correlation coefficients between both solutions ranged from 0.68 to
0.88, wherein the lowest correlation recorded for the profiles passed
through barchan dunes (P1, P3, and P4). In contrast, transects passing
through linear dunes indicated a good correlation (P2 and P6). This
comparison revealed that both archives can be used to retrieve the
magnitudes and directions of dune migration with high reliability and
reproducibility. Furthermore, the coarse resolution provided by these
archives should be sufficient for studies at the dune-field-scale. How-
ever, narrowing the scope of study to a single dune field (e.g., to study
the physics of the dune) may require higher resolution images.

4. Discussion

4.1. Performance of the proposed algorithm

Our method is an improvement of the inversion of the optical image
matching techniques introduced in previous studies (Bontemps et al.,
2018; Lacroix et al., 2019). In our algorithm, we first selected pairs
automatically to take advantage of the processing of redundant pairs to
reduce uncertainty and enhance spatial coverage (Dehecq et al., 2015).
The selection criteria were ordinated mainly to decrease the difference
in the solar illumination between pairs. Limiting the difference in the
angles of the Sun should be useful for decreasing shadows and seasonal
signals (Bontemps et al., 2018; Lacroix et al., 2019); additionally, our
baseline test revealed a strong relationship between solar illumination
and uncertainty. Because of the selection, the inversion was no longer
valid using the least squares method, similar to previous studies in
which full networks were established (Altena et al., 2019; Bontemps
et al., 2018; Lacroix et al., 2019). Therefore, an SVD inversion was used
in our study.

The contribution of our algorithm was assessed by investigating the
effect of the algorithm on spatial coverage and uncertainty (Bontemps
et al., 2018). First, we explored the effect of our algorithm on enhan-
cing the spatial coverage by first comparing the mean velocities from all
pairs before and after inversion (Figs. S11 and S12) and then comparing
the cumulative displacements extracted with and without inversion
(Figs. S13 and S14). Enhancement in the spatial coverage was estimated
by calculating the percentage of the non-masked pixels before and after
inversion (Table 2). This comparison revealed that inversion decreased
the uncovered area when averaging all pairs by 16% and 25% for
Landsat 8 and Sentinel-2, respectively. The uncovered area decreased
by an average of 12% for Landsat 8 and Sentinel-2 when comparing the
cumulative displacements of the inverted and non-inverted solutions. It
is worth noting that the algorithm introduced in the study of Bontemps
et al. (2018) significantly reduced the gaps by 14% when averaging 240

Fig. 11. Cross-correlation of the mean velocity solution between Landsat 8 and Sentinel-2 in the: (A) E–W direction, (B) N–S direction, and (C) magnitude. Panels (D)
and (E) show the histograms of the displacement values over the stable area (the black rectangle in Fig. 1C) for both Landsat 8 (blue) and Sentinel-2 (orange) in the
E–W and N–S direction, respectively. Panel (F) displays the histograms of the direction of dune movement for Landsat 8 (blue) and Sentinel-2 (orange) in the overlap
area (see Fig. 1C). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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pairs of SPOT-5 data and compared before and after the inversion. Our
proposed algorithm significantly enhances the spatial coverage when
compared to this previous algorithm. It is worth noting that ensuring
good spatial coverage is critical to enable capturing the whole picture of
the spatiotemporal patterns of the surface displacements.

We examined the effects of the proposed algorithm on uncertainties.
The algorithm helped decrease the uncertainty of the individual pairs to
~7% of the pixel size for both Landsat 8 and Sentinel-2 data. Based on
the inversion solution, the maximum uncertainties recorded were ap-
proximately 10% and 7% of the pixel resolutions for Landsat 8 and
Sentinel-2, respectively. Bontemps et al. (2018) reported that un-
certainty levels of approximately 10–20% of the pixel size were re-
corded in previous studies (Heid and Kääb, 2012; Michel and Avouac,
2002; Scherler et al., 2008; Taylor et al., 2008) employing a medium-
resolution of 10–15 m when applied over different time periods ranging
from 1 month to 3 years. However, the full-rank inversion performed by

Bontemps et al. (2018) achieved uncertainty levels of approximately
16–20% of the pixel size when employing a 10-m resolution to monitor
deformation over 35 years. In summary, our algorithm effectively de-
creases the levels of uncertainty and generally outperforms those pro-
posed in other studies in which medium resolutions were employed.
Additionally, our method was applied to monitor deformation over
~5.5 years.

4.2. Prevailing migration direction from mean velocity vs. resultant drift
direction

The wind regime in North Sinai is complex because of the variability
in both the spatial and temporal domains (Embabi, 2018; Hermas et al.,
2012). In previous studies, researchers have analyzed sand movement
by estimating the sand drift based on wind data records from meteor-
ological stations (Hereher, 2014, 2010; Philip et al., 2004). To de-
termine the reliability of our solution in extracting the direction of dune
migration, we compared the extracted prevailing migration direction to
the RDD computed from the wind data of two meteorological stations,
at Bir El-Abd and El-Malease. Additionally, we compared our results
with the RDD reported in previous studies (ElBanna, 2004; Hereher,
2000, 2014; Philip et al., 2004) (Fig. 13).

The mean annual records of the two meteorological stations were
available from 2013 to 2015. We estimated the potential sand drift
according to Fryberger’s (1979) equation, where wind speeds> 6 m/s
were considered effective for transporting sand particles. As shown in
Fig. 13, dune migration direction ranged from 54 to 160° for Bir El-Abd
and 46–166° for El-Malease. This wide range may be attributed to the
spatial variability of the wind speed and the length of the measurement
period. Despite this high variability, previous studies (Embabi, 2018;
Hermas et al., 2012) have reported that sand in the NSS tends to move
toward the east and southeast. Our mean velocity results agreed
strongly with such findings, as shown in Fig. 5. Here, the migration was
almost eastward in the majority of locations, and toward the south in

Fig. 12. Comparison between the spatial variability of the migration rates at different locations and through different transects (see Fig. 5C). The migration rates for
Sentinel-2 are in red and Landsat 8 are in blue. P2 and P6 pass through a group of linear dunes. P1, P3, and P4 pass through a group of barchan dunes, and P5 passes
along one of the linear dunes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Comparison between the spatial coverage of two cases: (1) between the mean
migration rates extracted from all pairs before and after inversion, and (2)
between the cumulative displacment extracted from the conventional and in-
verted solutions.

% Non-masked pixels Enhancement %

After inversion Before inversion

L8 EW 72% 56% 16%
NS 72% 56% 16%

S2 EW 92% 67% 25%
NS 92% 67% 25%

Inversion Conventional

L8 EW 68% 56% 12%
NS 68% 56% 12%

S2 EW 73% 60% 13%
NS 74% 60% 14%
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the southern part of the study area, where the prevailing dune mor-
phology was longitudinal and structured from north to south.

For a better comparison between the prevailing direction and the
RDD estimated from the wind data, we extracted small areas at the
locations of the two meteorological stations. Then, we statistically
analyzed the data to identify and discard the outliers. The prevailing
directions of the Landsat 8 mean velocity solution recorded
96.4° ± 12° and 102° ± 15.6° at Bir El-Abd and El-Malease, respec-
tively. The RDD extracted from recent wind data ranged from 59 to 98°,
with a mean value of 74° ± 18.2°, at Bir El-Abd and from 83 to 102°,
with a mean value of 95.4° ± 8.6°, at El-Malease. The standard de-
viations of the directions at Bir El-Abd were more significant than those
at El-Malease, which may be considered as an indicator of greater local
variability in the wind regime. It can be observed that good agreement
between the values extracted from the prevailing migration direction
and the average RDD, especially for Bir El-Abd, where the differnces
between the prevailing direction and the mean RDD recorded 22° and
7°, at Bir El-Abd and El-Malease, respectively. Theses difference are
considered acceptable, where the two values were extracted from dif-
ferent methods, and over different time interval (i.e., the study period).
To further investigate the potential of the mean velocity for estimating
a reliable prevailing directions of movement, we compared the sand
roses of each dune morphology extracted from both solutions (i.e.
Landsat 8 and Sentinel-2), as shown in Fig. 14. Generally, there was a
strong agreement between both solutions, especially for linear dunes
and sand sheets. A quantitative analysis of the prevailing move-
ment directions revealed that the maximum difference between the two
solutions as 9°, which is considered promising, especially in this com-
plex wind regime.

Fryberger (1979) used the ratio between DP and RDP to express the
directional variability of the prevailing wind direction in a field. The
ratio of RDP/DP can be separated into three classes: the first is when
RDP/DP is high (> 0.7), which means that a unidirectional wind re-
gime exists and the transverse dune is dominant, the second is when
(0.7 ≤ RDP/DP≤ 0.3), which occurs when a bidirectional wind regime
prevails and linear dunes occur, and the third is when the ratio (RDP/
DP < 0.3) occurs for regions with multidirectional wind regimes, in
which star dues are common (Hereher, 2018). The three-year average
RDP/DP values were 0.53 and 0.58 at Bir El-Abd and El-Malease,

respectively, which considered second class with linear dune prevailing
dune morphology. Together, these findings demonstrate that the pre-
vailing direction derived from the mean velocity solution can effec-
tively represent prevailing wind direction, especially when there is a
paucity of metrological stations, such as in vast deserts (e.g., the Sahara
and Arabian deserts).

4.3. A comparison with previous studies

Previous studies have been conducted on dune migration over dif-
ferent parts of the NSS. Hermas et al. (2012) reported on the migration
rates extracted from previous studies. It is worth noting that in most
previous studies, field measurements or classical remote sensing tech-
niques were employed to focus on either the linear or barchan dunes.
The migration rates have exhibited a wide range of variation, which
supports the complexity of the dune filed there. Hermas et al. (2012)
applied the matching technique of COSI-Corr, employing two SPOT-4
images spanning 292 days from 2007 to 2008, to monitor dune mi-
gration over part of the NSS. We compared our velocity results ex-
tracted from Sentinel-2 to those of Hermas et al. (2012) at the same
locations, where both satellites have the same resolution (10 m). The
mean velocity solution covered 1150 days from 2015–2019. Hermas
et al. (2012) reported that the migration rates ranged from 4.0 to 20 m/
a, with mean of 6.8 m/a and 7.7 m/a for linear and barchan dunes,
respectively. Meanwhile, the mean velocities from Sentinel-2 data re-
corded migration rates of 1.68 m/a and 1.22 m/a for linear and
barchans dunes, respectively. These values were extracted after re-
moving the pixels with values less ≤0.5 m/a, which were considered to
represent interdune areas. We also compared the displacement values
over the mountainous areas, where the study by Hermas et al. (2012)
showed mean displacement of 5.5 m, compared to 0.027 ± 0.19 m/a
for the mean velocity results of Sentinel-2. It is obvious that there were
large differences in the extracted rates between both solutions. This
variability can be attributed to the differences in the time of application
and the complexity of the dune field. Additionally, there were large
differences between the records of displacement over the mountainous
area between our study and that of Hermas et al. (2012), wherein the
latter introduced large values without any interpretation. Hermas et al.
(2012) compared their extracted results to previous records, which may

Fig. 13. Comparison between different records of RDD at two metrological stations (Bir El-Abd and El-Malease) and the extracted prevailing migration directions.
Wind data records were available for three years, from 2013 to 2015. For comparison with other studies, we extracted the values by digitizing the displayed maps in
an ArcGIS 10.3 (Esri, USA) environment.
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be ineffective, especially in this study area where a wide range of mi-
gration is present over a complex dune field. However, the mean ve-
locity results of Sentinel-2 showed lower uncertainties, and agreed well
when compared to those values extracted from the mean velocity re-
sults of Landsat 8. This supports the use of our methods for representing
the annual migration rates of dunes with high reliability.

5. Conclusions

We adapted a time-series inversion algorithm employing the
matching results of both Landsat 8 and Sentinel-2. Our algorithm
comprises two procedures: (1) the automatic selection of pairs with
little differences in solar illumination to decrease the effects of shadows
and seasonal variability, (2) the inversion of the time series. Owing to
redundancy, the algorithm effectively decreases the uncertainties and
enhances the spatial coverage. It is worth noting that our algorithm
recommended limiting the sun angles as a first priority to control the
cast shadows and the seasonal signals where other parameters used in
this study may not be suitable for monitoring different targets, espe-
cially the cloud cover percentage. Therefore, the careful tuning of
parameters would aid in balancing the number of images shared during
inversion and the connectivity of the established network.

We applied our algorithm to monitor dune movement over a part of
the NSS. The time-series displacements revealed the existence of seasonal
signals in dune migration, which agreed with the existing wind regimes.
The maximum annual migration rates recorded were 9.4 m/a and
15.9 m/a for Landsat 8 and Sentinel-2, respectively. We extracted the
prevailing migration directions for both solutions, which also agreed with
each other and with the RDD extracted from the wind data. These pre-
vailing directions can be used as a proxy for wind direction, especially in
vast deserts (e.g. Sahara desert and Arabian deserts), where no meteor-
ological records are available. The proposed algorithm, which employed
medium-resolution imagery, showed excellent performance in capturing
the patterns of dune dynamics at the dune-field-scale in both the spatial
and temporal domains. However, focusing on a single dune would require
the use of high-resolution archives. Understanding the temporal patterns

of dune movements and correlating them with continuous wind records
can aid in predicting climatic changes and atmospheric conditions asso-
ciated with dust transport. The method proposed here can be used to
monitor the spatiotemporal patterns of glaciers and slow-moving land-
slides with good spatial coverage and smaller uncertainties, especially for
archives that provide images with high revisit times.
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Fig. 14. Sand roses of different dune morphologies, as represented in Fig. 5C; A–D are for the Landsat 8 solution, whereas E–H are for Sentinel-2. Each column
represents different dune morphologies arranged, from left to right, as follows: barchan, linear, sand sheets, and the linear dunes in the white box in Fig. 5C. The
magenta arrows represent the prevailing movement directions.
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