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A B S T R A C T

Estimating deformation at the upstream dam slope from Interferometric Synthetic Aperture Radar (InSAR) is 
challenging due to the complete loss of coherence in seasonally inundated upstream slope. Here, we present an 
improved Distributed Scatterer-InSAR method that accounts for the seasonal decorrelation of upstream dam 
slopes and optimizes the interferogram pair selection with inter- and multi-annual baselines. We term this novel 
method Seasonally Inundated Distributed Scatterer InSAR (SIDS-InSAR). We apply the method with multi-sensor 
InSAR observations during 2007–2023 at the Xiaolangdi Reservoir (XLD), China, including Sentinel-1, ALOS-1, 
and ALOS-2. The results show that a new deformation map on a 1540 × 50 m2 upstream slope in XLD, and a 
decaying settlement of 4.7 cm/yr (2007–2010) and 2.5 cm/yr (2015–2023), with an RMSE of 0.62 cm/yr 
compared to the leveling measurement. Additionally, the deformation rates are heterogeneous across the dam 
body as 3.7, 4.2, and 3.2 cm/yr for upstream, crest, and downstream, respectively. This study demonstrates that 
the SIDS-InSAR method has potential to provide a more comprehensive deformation time series of dam body, 
especially for the leading-edge upstream slope part.

1. Introduction

Dams bear both internal and external loads, including cyclic water 
loading, self-consolidation, rainfall, and aging, all of which contribute to 
deformation (De Sortis and Paoliani, 2007). It is crucial to monitor 
deformation and ensure the structural safety of dams throughout their 
lifespan (Tomás et al., 2013; Wang et al., 2024). Over the past seven 
decades, global interest in dam construction has surged due to 
increasing demands for power generation, flood control, and water 
resource management (Gao et al., 2012; Liu et al., 2023b). Currently, 
more than ~ 140,000 reservoirs are documented in various scientific 
catalogs (e.g., GranD and GOODD), and the actual number is expected to 
be much higher than recorded (Song et al., 2022; Wang et al., 2022). 
Such a massive number of dam constructions and operations pose a 
significant challenge for instrumental-based monitoring. Even large 
dams, typically considered safer, have experienced catastrophic failures 
worldwide, including the Oroville Dam (USA, 2017), XPXN Dam (Laos, 
2020), Sardoba Dam (Uzbekistan, 2020), Derna Dam (Libya, 2023), and 
Nakuru Dam (Kenya, 2024) (Oduoye et al., 2024; Verma and Vijay, 
2024; Xiao et al., 2022; Xie et al., 2022a, 2022b). Therefore, the 
development of instrument-based methods for large-scale dam 

deformation monitoring is urgent for hazard prevention.
Recent advancements in data processing techniques and abundance 

of data availability have demonstrated a wider application of Interfer
ometric Synthetic Aperture Radar (InSAR) in routine dam monitoring 
and hazard early warning (Emadali et al., 2017; Milillo et al., 2016; 
Papoutsis et al., 2020). For example, Xie et al. (2022a) reported an 
accelerating deformation of 10 cm/yr two months before a dam failure 
event using Sentinel-1 data in the Mekong River, demonstrating the 
potential of InSAR as a precursory warning tool. In Sardoba dam, 
Uzbekistan, more localized differential subsidence of 1 cm/yr was 
identified from InSAR, prior to its final breach at a 200-meter section in 
May 2020 (Xiao et al., 2022; Xie et al., 2022b). InSAR also detected 
deformation in the concrete Kakhovka Dam (Ukraine), where subsi
dence of 8–23 mm/yr was observed starting in June 2021, and lateral 
movements of 5–28 mm/yr initiated in June 2022 
(Tavakkoliestahbanati et al., 2024).

Although InSAR technique has proven successful in monitoring dam 
deformation, challenges remain due to the inadequate SAR image res
olution and density of scatterers to capture the full picture of dam 
deformation. For the most widely used C-band SAR system such as 
Sentinel-1, the medium resolution of ~ 5-by-20 m can only provide, 
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even for a mega-dam, thousands of observation pixels (Ruiz-Armenteros 
et al., 2021). For instance, Tavakkoliestahbanati et al. (2024) success
fully identified an accelerating deformation of the Kakhovka dam in 
Ukraine before its collapse. However, the spatial resolution of the 
extracted InSAR scatterers for a concrete dam can still reach up to 100 
m, potentially leading to the oversight of destabilized structures. As the 
vegetation, geometry distortion, soil moisture, and water inundation can 
directly alter properties of scattering (Shen et al., 2023), the stable 
permanent scatterers (PS) may degrade to distributed scatterers (DS), 
further decrease the available spatial coverage.

To address this, the DS-InSAR based method has been introduced to 
increase the spatial coverage of InSAR dam deformation (Ferretti et al., 
2011; Luo et al., 2023). In the DS-InSAR workflow, spatially homoge
neous pixels (SHP) are first identified by testing the similarity between 
neighboring pixels within a defined window. Various amplitude-based 
statistical methods, such as the Kolmogorov-Smirnov (KS) test, 
Anderson-Darling (AD) test, and Baumgartner–Wei–Schindel (BWS) 
test, have been employed to measure temporal variations between 
reference and target samples (Chen et al., 2023; Ferretti et al., 2011; 
Wang et al., 2012). By using confidence interval estimates of pixel’s 
mean intensities instead of the conventional hypothesis testing for the 
SHP estimation further increases the speed of SHP searching (Jiang 
et al., 2015), although some scatterers with a similar average of am
plitudes may not be subject to the same DS cluster. Therefore, several 
priors and assumptions have been introduced to quantify temporal 
features in SHP selection. For instance, Lee and Shirzaei (2023) used the 
standard deviation of amplitude probability density function (PDF) to 
classify scatterers as permanent, permanent-distributed, and distrib
uted. Hu et al. (2019) developed a temporal detection method to 
adaptively select highly coherent subsets based on amplitude time series 
stability analysis. However, for seasonally decorrelated points due to 
water inundation, non-fixed periodicity or step-wise functions can be 
utilized to describe amplitude changes, and subset refinement methods 
may fail to provide a continuous network for time series analysis.

After SHP selection, phase linkage approaches, such as phase trian
gulation and eigenvalue decomposition, are used to optimize wrapped 
phase time series, with covariance matrices serving as statistical indices 
(Ansari et al., 2017; Ferretti et al., 2011). Thereafter, conventional 
network inversion methods, such as SBAS, Delaunay, and single- 
reference networks, are employed to estimate time-series deformation 
(Mirzaee et al., 2023; Reinisch et al., 2017). However, SBAS-based ap
proaches with fixed thresholds do not always guarantee high-coherence 
target selection. Adaptive thresholding methods, using image- or pixel- 
based coherence analysis, have been proposed to minimize residual er
rors (Wu et al., 2019; Zhang et al., 2023). Optimization techniques, 
which seek to maximize overall coherence, avoid the need for threshold 
determination (Jiang and Guarnieri, 2020; Liang et al., 2023; Pepe et al., 
2015). However, the points or interferograms with seasonal abrupt 
coherence loss will be considered as the decorrelated pairs, to achieve a 
lower cost target in the optimization (Reinisch et al., 2017; Smittarello 
et al., 2022; Wang et al., 2023). Consequently, even with the combi
nation of PS-InSAR and DS-InSAR, the scatterer density can only achieve 
two to five times from the original SAR resolution. InSAR predominantly 
captures deformation on the dam crest and downstream slope (Liu et al., 
2024). For instance, Liu et al. (2021) enhanced the density of scatterers 
on the XLD dam from ~50 m to ~30 m using the conventional DS-InSAR 
method. However, critical areas below the dam crest still lack reliable 
monitoring, with only sparse and discontinuously distributed scatterers 
available.

In this study, we present an improved DS-InSAR method, termed as 
Seasonally Inundated Distributed Scatterer InSAR (SIDS − InSAR), for 
extracting deformation on seasonally inundated upstream dam slope by 
optimizing the DS and interferogram selection. In Section 2, we describe 
the proposed method based on the spatial–temporal features of the 
seasonally inundated scatterers (SIS). Two key selection steps are pre
sented as: 1) seasonally inundated scatterer selection, and 2) iterative 

minimal spanning tree (MST) pair selection. In Section 3, we introduce 
the study area, Xiaolangdi Reservoir, and datasets used in this study. In 
Section 4, we present the experimental results and evaluate performance 
using different methods and in-situ measurements. Section 5 discusses 
the deformation mechanisms and implications revealed by decadal and 
multi-sensor InSAR observations at XLD. We conclude the study in 
Section 6.

2. Method

2.1. Overview of the proposed method

To extract the deformation at seasonally inundated dam slope, we 
propose SIDS-InSAR method to identify the seasonally inundated scat
terers from the co-registrated SLCs (Part I, Fig. 1), and an interferogram 
pair selection method using multiple MSTs (Part IV, Fig. 1). These two 
steps can be integrated into the conventional DS-InSAR workflow, such 
as identification of PS and DS, coherence and phase estimation, and 
time-series estimation.

2.2. Seasonally inundated scatterer selection

To identify seasonally inundated scatterers on the dam’s upstream 
slope, we propose a scatterer selection method that accounts for 
amplitude fluctuations driven by reservoir impoundment and release 
cycles. According to the central limit theorem, the real and imaginary 
components of backscatter signals are assumed to follow Gaussian dis
tributions with identical variance and a zero mean. Consequently, the 
PDF of SLC amplitudes should conform to the Rayleigh distribution 
(Moser et al., 2006), as follows: 

f(A|θ) =
A
θ2 exp

(
− A2

2θ2

)

(1) 

in which A is the amplitude, and θ is the distribution parameter that can 
be estimated by maximum likelihood estimation. In contrast, inundated 
pixels deviate from the Rayleigh distribution due to their dual scattering 
behavior: permanent-to-distributed-like backscattering during water 
recession and a complete loss of signal during inundation (Fig. 2). This 
results in a dual-modality amplitude pattern in the temporal domain. To 
capture this behavior, we employed Hartigan’s Dip Statistic (HDS) 
method (Hartigan and Hartigan, 1985), which evaluates deviations be
tween the empirical cumulative distribution function (eCDF) of samples 
and a unimodal distribution. The dip statistic is expressed as: 

Dip(F) = sup
x
|F(x) − U(X)| (2) 

in which F(x) and U(x) are the eCDF of samples and closed unimodal 
CDF, respectively.

The corresponding p-value and the indicator function I can be 
expressed as follows: 

p =
1
N

∑N

1
I(xi) (3) 

I =
{

1,Dip(Fx) < Dip(FU)

0,Dip(Fx) ≥ Dip(FU)
(4) 

where N is the number of samples, and the Dip(Fx) and Dip(FU) are the 
statistics from target samples and uniform samples from bootstrap, 
respectively. If the p-value is greater than the significance level α, the 
null hypothesis H0, indicating an unimodality distribution, will be 
accepted.

As the dip-test can only discriminate the unimodality for the given 
amplitude time series, some scatterers will be erroneously selected due 
to the soil moisture, vegetation, and noise. To avoid these biases, we 

L. Xie et al.                                                                                                                                                                                                                                       International Journal of Applied Earth Observation and Geoinformation 138 (2025) 104462 

2 



further applied the nonparametric test to constrain the selected targets 
with a bimodality and directly reference to the water level changes in 
reservoir. This refinement uses the Kolmogorov–Smirnov (KS) test for 
the CDF of water level time series Fw(x) and observed time series of 
amplitude FA(x), as follows: 

Dn = max|FA(x) − Fw(x)| (5) 

Therefore, the SIS rejected by KS distribution relative to water level time 
series will be removed from the non-unimodal set, ensuring that only 
candidates correlated with water-level changes are retained.

2.3. Iterative MST-based interferogram selection

While the short temporal baselines maintain good coherence and be 
sensitive to the seasonal deformation, a systematic bias may occur in the 
long-term deformation estimation due to error propagation. Therefore, 

considering the multi-annual pairs on the selected inundated points can 
still have a moderate-to-strong coherence (0.3–0.6), we propose a new 
strategy by balancing the short and long pairs of interferograms. While 
the coherence can be affected by multiple factors (e.g., geometry, 
baseline, and thermal noise), we only use the dominant temporal 
baselines as the factor in pair selection: 

γtotal = γtemp ⋅γspatial ⋅γthermal ⋅γnoise
≃ γtemp

(6) 

Therefore, from a threshold-based perspective, the shorter temporal 
baselines are preferred to maintain a better coherence, which in turn 
discards most of the multi-annual interferograms. As the coherence 
behavior cannot be exactly modeled, we employ an empirical expo
nential model to simultaneously account decaying coherence in tem
poral domain (Libert, 2019), as follows: 

Fig. 1. Overview of the proposed SIDS-InSAR method. Two key steps are depicted in yellow boxes: 1) identification of SIS and 4) iterative MST-based interferogram 
selection. Note that EMI represents the Eigen decomposition-based Maximum-likelihood-estimator of Interferometric phase (Ansari et al., 2018).
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γ(t) = ae− bt + c (7) 

in which the exponential coherence model scaled and shift the original 
coherence in a temporal base t days with a scaling factor a, a decaying 
factor b, and a shift factor c.

To exclude the acquisitions during high water standing periods, a 
local maximum of mean amplitudes on the selected seasonally inun
dated points are defined Tmax = {Tm1,Tm2,⋯,Tmk}. Neighboring j ac
quisitions are included to enrich the residual observations of short 
temporal baselines. In turn, both local maximum acquisitions and their 
neighbors compose the selected acquisitions as: 

Tselected =
{
Tm1− j,⋯,Tm1,⋯,Tm1+j,⋯,Tmk− j,⋯,Tmk,⋯,Tmk+j

}

(8) 

Given the scaled proxy 1 − γ(t) as the cost metric, we constructed mul
tiple MST networks. Each SAR acquisition is treated as a node, and edges 
are formed by connecting k+2j acquisitions, follow minimum the total 
cost. Up to k+2j − 1 edges will be seleleced as a new graph representa
tion. The first temporal interval P0 is [0, 1) year to select the short pairs 
near the low water standing period. The next interval P1 is [1, 2) years to 
account for the annual pairs. The remaining intervals Pi are increased 
with a fixed time period (e.g., 2 years) to select the pairs which is less 
affected by the decorrelation. Subsequently, all the pairs selected by 
different temporal intervals will be merged to form a complete inter
ferogram network, as follows: 

Psel =

{
⋃⌈(Tmax − 2)/ti⌉

1
Pi

}
⋃

P0

⋃
P1 (9) 

in which Tmax indicates the maximum temporal baselines for the selected 
acquisitions.

3. Study area and data process

3.1. Study area and datasets

3.1.1. The dam structure of XLD Reservoir
The Xiaolangdi Reservoir, one of the largest reservoirs in China, was 

selected as our study target. XLD is located at the middle reach of the 
Yellow River, 40 km north to the Luoyang, Henan Province, China 
(Fig. 3a–b). It has a maximum water storage capacity of 12.6 km3 and a 
sediment storage capacity of 7.6 km3, serving purposes such as elec
tricity generation, irrigation, and shipping (Xu et al., 2018). The dam is 
an inclined clay-core dam, ranking among the world’s highest rock-fill 
dams with a height of 160 m and a crest elevation of 283 m above sea 
level. The crest of dam is 1,667 m in length and 15 m in width. The 
foundation lies on a 70-meter overburden layer, with a concrete cutoff 
wall extending to a maximum depth of 82 m (Fig. 3c, Zhao, 2010). The 
upstream and downstream slope ratios are 1:2.6 and 1:1.75, respec
tively. The dam construction project began in September 1994, con
ducted river closure in October 1997, and the project was fully 
operational in December 2001 (Hu et al., 2004). The reservoir reached 

Fig. 2. An example of amplitude time series and the PDF of amplitude for the selected points: c) the upstream slope, d) the crest, e) the downstream slope, f) 
open water.
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its high-standing water level of 270 m in 2009.

3.1.2. SAR data
Three types of SAR sensors have been collected, including 225 scenes 

of Sentinel-1, 8 scenes of ALOS-1, and 15 scenes ALOS-2 during 2007 to 
2023 (Table 1, and Fig. 3b). The raw SLC resolution (azimuth-by-range 
directions) for the Sentniel-1, ALOS-1, and ALOS-2 are 15.6 × 2.3, 9.4 ×

17.7, 14.4 × 17.2 m, respectively. Due to the sparse revisit interval of 
ALOS series data during the low water standing period at XLD, Sentinel- 
1 data were prioritized for testing the performance of the proposed 
method. The temporal overlapped ALOS-2 data were used for cross- 
validation. The ALOS-1 data were used to track the deformation dur
ing 2007–2010, at which other two sensors have not been launched.

Fig. 3. Study area. a) The study area of XLD. The red dashed and yellow polygons represent the dam layout and crest, respectively. b) The footprints of SAR data. The 
red, purple, and green boxes denote the coverages of Sentinel-1, ALOS-1, and ALOS-2, respectively. c) Cross-section of the dam (adopted from Kong et al., 2017). d)– 
e) Examples of seasonal inundated upstream slopes at a low water standing in September 2002, and high water standing in August 2020. AT denotes the 
ascending track.

Table 1 
The parameters of SAR data used in this study.

SAR Orbit Mode Observation period Scene No. Resolution 
(az. by rg.)

Sentinel-1 Ascending IW 2015/04/11–2023/12/25 225 15.6 × 2.3
ALOS-1 Ascending Fine 2007/07/06–2010/07/14 8 9.4 × 17.7
ALOS-2 Ascending Fine 2015/01/14–2023/10/25 15 14.4 × 17.2
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3.1.3. Water level data
We used three types of water level data to cover the study area 

(Fig. 4): 1) In-situ water level data (20150411–20231225) from the 
bulletin of the Yellow River Water Conservancy Committee of the 
Ministry of Water Resources, China. 2) Radar altimetry data as TOPEX 
(19920930–20020808) and Jason-2 (20081214–20150324) collected 
from Global Reservoirs and Lakes Monitor (G-REALM). 3) Water delin
eation using the optical imagery of Landsat-5 and Landsat-7 
(20020911–20081120) and AW3D30 DEM.

3.1.4. Leveling data
Leveling benchmark conducted between March 2017 to October 

2020 were employed for examining the performance of InSAR results 
(He et al., 2022). There are six available leveling sites, with B08, B15 in 
the upstream slope at a height of 260 m; 811, C11 closed to the center of 
dam crest with a height of 283 m, and 508 and C18 with 200 and 400 m 
of distance to the central dam axis (Fig. 3a).

3.2. InSAR data processing

We utilized the InSAR Scientific Computing Environment (ISCE2) for 
the interferogram processing. The enhanced spectral diversity method 
was applied for the fine co-registration, and maintained the residual 
error to 1/1000 pixel (Fattahi et al., 2017). The AW3D30 DEM with 1- 
arc second resolution was used to remove the topographic phase 
component. Then, we employed the proposed method to select the SIS, 
and other DS candidates were identified based on local self-similarity as 
SHPs. The coherence matrix was estimated within local windows to 
avoid the bias from decorrelation noise. The phase time series recovery 
utilized eigenvalue decomposition and the maximum likelihood esti
mator as described by Ansari et al., (2018): 
(

Γ̂
− 1◦

C
)

ζ̂ = λζ̂ (10) 

in which Γ̂
− 1 

is normalization of covariance matrix, C is sample cor
varaince matrix, λ is the minimum eigenvalue, and ζ̂ is the corre
sponding eigenvector. After the phase linkage, interferograms were 
generated according to the network from multiple MSTs method. The 
optimized phase time series were unwrapped by the SNAPHU (Chen and 
Zebker, 2002), and corrected by a phase closure procedure with com
mon connected component masks. We performed a weighted least 
square for the network inversion weighted by the covariance matrix. The 
tropospheric phases were decreased by the external atmospheric prod
ucts GACOS (Yu et al., 2018). A second-order polynomial combined with 
a 1-year periodic function was used to estimate velocity.

4. Results

4.1. The result of SIS selection

The proposed method effectively identified seasonally inundated 
points on the upstream slope of the dam. The initial dip test detected 
scatterers exhibiting non-unimodal amplitude distributions. However, 
some candidates unrelated to the upstream slope were retained due to 
seasonal variations in vegetation, soil moisture, and wave-induced 
scattering variability (Fig. 5a). The remaining points on the water sur
face may come from the random errors or the waves which modify the 
specular reflection to the diffuse reflection. The subsequent refinement 
using KS test, which correlated amplitude distributions with water-level 
changes, excluding 38.7 % of the candidates from the dip test (Fig. 5b). 
Ultimately, 479 SIS points were identified on the upstream slope which 
covered an ~ 50 by 1240 m along the upstream dam axis (~62,000 m2), 
corresponding to an average spacing of 131 m2 per point (Fig. 5c). 
Although candidates close to the crest can be visually confirmed as 
upstream slope scatterers, they were excluded by the KS test due to 
weaker water-level correlations.

4.2. The result of interferogram selection

The mean amplitudes from the selected SIS were normalized to 
identify nine local and annual peaks (Fig. 6a), which were extended to 
two adjacent neighboring acquisitions (~25 days). These 36 acquisi
tions first formed a full stack of 630 interferograms, with coherence 
scaled using an exponential decay model γ = 0.57 × e− 2.82×10− 4t +0.041 
(Fig. 6b). The MST network selected the interferograms iteratively with 
increasing temporal intervals. For 0–2 years, two MSTs generated 27 and 
35 pairs, respectively (Fig. 7b–c). Subsequent intervals of 2–4, 4–6, and 
6–8 years produced 35, 35, and 21 pairs, respectively (Fig. 7c–f). 
Combining six MSTs yielded 153 interferograms (Fig. 7g), creating a 
balanced network that incorporated both short and long temporal 
baselines.

4.3. Comparison and validation

First, we compared the estimated velocities from the proposed 
method with the Delaunay and SBAS networks (i.e., with a maximum 
temporal baseline of 430 days, and spatial baseline of 200 m). There are 
99 and 183 pairs of interferograms generated from the Delaunay and 
SBAS networks (Fig. 8b–c). The velocities were estimated by the same 
second-order polynomial with a 1-year periodic function. From the 
proposed iterative MSTs network, we effectively captured significant 
deformation on the upstream slope (350 × 60 m), with maximum LOS 
velocities ranging from 1.5–2 cm/yr (Fig. 8d). In comparison, the 

Fig. 4. Time series of water level in XLD during 1992–2023 from in-situ gauge, radar altimetry, and water-delineation.
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Fig. 5. The selected seasonally inundated scatterers on the upstream slopes: a) The candidates using unimodality dip-test; b) The candidates rejected by the KS-test 
(brown points); c) the final selection of SIS.

Fig. 6. Annual amplitude peaks and coherence with exponential model for interferogram pair connections.
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Delaunay network underestimated deformation with maximum rates of 
0.77 cm/yr at the middle section of the dam axis, and 85.2 % of points 
exhibiting a velocity difference below 0.5 cm/yr (Fig. 8e and 8g). The 
SBAS network showed a more consistent deformation pattern with the 
proposed method that 88.1 % of velocity discrepancy was less than 0.5 
cm /yr (Fig. 8f and 8 h).

Similar to the upstream slope, the deformation estimated from the 
proposed method in the crest and the downstream slope has a more 
significant deformation and concentrated pattern, with maximum LOS 
deformation of ~ 3.1 cm/yr (Fig. 9a). Validation against leveling mea
surements conducted between March 2017 and October 2020 revealed 
that the proposed method achieved the lowest RMSE (0.62 cm/yr), 
outperforming the SBAS (0.92 cm/yr) and Delaunay (1.24 cm/yr) net
works (Fig. 9e). Notably, at locations near crest with intensive 

deformation (e.g., C11 and 811), the proposed method exhibited mini
mal deviation of 1.15 cm/yr and 0.43 cm/yr (Fig. 9d-e). The observed 
underestimation of InSAR-derived measurements compared to in-situ 
data was primarily attributed to coarse spatial resolution averaging, 
which may introduce the lower estimates and systematic bias in highly 
deformed area (Zheng et al., 2022).

4.4. Temporal variation of dam deformation

To better illustrate the deformation evolutions of the dam, we fol
lowed the conventional SBAS method to process the ALOS-1 and ALOS-2 
data for the reason that a sparse temporal coverage does not allow for a 
DS-like processing. The ALOS-1 data (2007–2010) showed vertical 
deformation rates from − 4.7 cm/yr to − 2.7 cm/yr near the main axis of 

Fig. 7. Interferogram pair selection. a) Full connection of interferogram pairs; b) –f) the step-by-step selection; g) the proposed method.
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the dam body (Fig. 10a). Between 2015 and 2023, both Sentinel-1 and 
ALOS-2 indicated similar decelerated trends with vertical deformation 
rates ranging from − 3.2 cm/yr to − 2 cm/yr (Fig. 10b–c). Specifically, 
the upstream slopes at elevations of 250–283 m, showed a distinct 
deceleration from − 3.7 cm/yr to − 2.7 cm/yr between periods of 
2007–2010 and 2015–2023. The dam crest experienced a more pro
nounced decelerated deformation from − 4.7 cm/yr to − 2.5 cm/yr. The 
downstream slope at elevation, from 250 to 283 m, demonstrated 
similar decelerating trends from 3.2 cm/yr to 1.7 cm/yr.

Temporally, we employed the full stack of Sentinel-1 data (225 
scenes) with temporal resolution of 12–24 days to replace the selected 
36 scenes during low water-standing periods. It enables a more fined 
seasonal deformation estimation due to water level changes in the crest 
and downstream slopes (Fig. 11, grey dots). All validated leveling points 
exhibited a strong negative correlation (ranging from 0.5 to 0.8), 

indicating that deformation in the vertical direction was modulated by 
static stress from water loading. The amplitude of seasonal deformation 
was found to be proportional to the amplitude of water level fluctua
tions. For instance, during 2017–2018, when water levels ranged from 
238 to 267 m, the seasonal displacement was approximately ± 12 mm. 
In 2018–2019, as water levels fluctuated more significantly (214–267 
m), seasonal deformation increased to approximately ± 18 mm.

5. Discussion

In this section, we discussed the driving factors for the long-term and 
seasonal deformation of the XLD dam as revealed by multi-sensor InSAR 
observations. The long-term deformation by the ALOS series and 
Sentinel-1 data reveals a decelerating subsidence across all major sec
tions of the dam body from Period I (2007–2010) to Period II 

Fig. 8. The comparisons of estimated deformation velocity on the upstream slope using different network configurations. Row 1: the baseline configuration. Row 2: 
the estimated LOS velocity. Row 3: the difference of estimated velocity maps. The dashed black and red lines denote the seasonal exposed dam structures in 2002 and 
2020, respectively.
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Fig. 9. The validation of estimated deformation velocity across the dam: a–c) the estimated LOS deformation; d) the displacement along profile A1–A2; e) the 
validation with leveling data. The unit of distance is pixel in radar coordinate.

Fig. 10. The decaying vertical deformation from different sensors during 2007–2023: a) ALOS1 (2007–2010); b) Sentinel-1 (2015–2023); c) ALOS-2 (2015–2023).
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(2015–2023). For instance, C11 at the upstream slope, InSAR results 
indicate a subsidence of 4.8 cm/yr in Period I to 3.3 cm/yr in Period II. 
Compared to previous InSAR investigations at the XLD dam, Liu et al. 
(2021) and Luo et al. (2023) reported a similar subsidence rate of 2–3 
cm/yr at the crest of XLD dam. However, the decadal decaying subsi
dence cannot be adequately captured by Sentinel-1 data alone. Although 
there is a 1.1 cm/yr underestimation compared to leveling data from 
2018 to 2019, the temporal decaying trend is evident. Considering 
leveling data after the initial impoundment from 2004 to 2006 (Zhao, 
2010), the same leveling line at 283 m on the upstream side shows a 
subsidence of 8.5 cm/yr, also indicating a clear exponential decay. 
Therefore, this long-term settlement documented by InSAR in recent 
decade is supposed related to the compression of soil layers under sus
tained self-gravity loading (Hu et al., 2017; Terzaghi et al., 1996).

Despite the temporal deceleration, the observed vertical deformation 
rates in key structures are 3.7 cm/yr for the upstream slope, 4.7 cm/yr 
for the crest, and 3.2 cm/yr for the downstream slope. This also suggests 
the observed deformation is influenced by the filling height of the dam 
body (Liu et al., 2023a). Comparison of C11 and 811 sites on the same 
elevation of 283 a.s.l but for upstream and downstream slopes, the 1 cm/ 
yr larger subsidence is likely caused by water pressure directly acting on 
the slope or deformation from shallow sediments (Lin et al., 2023), 
rather than self-weight-induced consolidation (Tedd et al., 1997).The 
findings indicate that deformation in the XLD dam over the past decade 
is governed by both long-term and seasonal factors: 1) Consolidation 

related to the filling height and material properties of the dam body; 2) 
Water loading, which exerts static pressure on the upstream slope and 
induces bending of the foundation; 3) Shallow sediment compaction 
predominantly affecting the upstream slope. It also highlights advan
tages of the proposed method in providing a more comprehensive view 
of dam structure by a dense scatterer coverage, particularly in the up
stream slope with ~ 100 m2 per point. As a result, the observed het
erogeneous deformation can reflect the structural complexity of the dam 
and the spatial distribution of the water body.

6. Conclusion

In this study, we present an enhanced InSAR time series approach, 
termed SIDS-InSAR, for extracting deformation of seasonally inundated 
dam slopes. The method incorporates two key advancements in the 
conventional DS-InSAR processing workflow: (1) identification of 
seasonally inundated scatterers through a two-step statistical testing 
process, which enables the effective InSAR monitoring in dam’s up
stream slope; and (2) integration of multiple MSTs to optimize velocity 
estimation by balancing short and long temporal baselines, thereby 
improving the deformation monitoring accuracy through optimized 
baseline configuration. We applied the proposed method to the Xiao
langdi Reservoir using Sentinel-1 data from 2015 to 2023. The approach 
effectively captured deformation in the upstream slope, achieving a 
density of 131 m2 per point over the upstream slope area of 62,000 m2. 

Fig. 11. The time series vertical deformation from different sensors and the leveling measurements. Noted that the S1-full represent the full stack of 225 images, and 
the S1-part denotes the selected 36 scenes acquired at the low water standing period.
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The extracted heterogeneous deformation across different structures of 
dam body rates of − 5 to − 2 cm/yr were validated against leveling data 
and other methods, demonstrating improved accuracy with residuals of 
0.62 cm/yr. Additionally, we combined the ALOS-1/2 data to capture 
the decadal deformation evolution since 2007, revealing a decaying 
settlement of 4.7 cm/yr to 2.5 cm/yr from 2007 to 2023. In summary, 
the proposed SIDS-InSAR method and decadal InSAR observations 
enable the characterization of heterogeneous dam deformation patterns 
in both temporal and spatial domains. This approach facilitates the 
identification of deformation drivers, such as seasonal water loading, 
dam structure, and consolidation, thereby contributing to the improved 
management and safety assessment of hydraulic infrastructure.
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