
1. Introduction
The Galápagos Islands sit atop a mantle hotspot centered beneath Fernandina and Isabela islands and constitute 
one of the world's largest and most active groups of oceanic volcanoes (Geist et al., 2014; Ito & Bianco, 2014). 
Six out of seven volcanoes of the western Galápagos Islands have well-developed summit calderas (Figure 1). 
Frequent eruptions have been reported in the Galápagos since the 1950s (Simkin & Siebert, 1994) and caldera 
collapse was witnessed at Fernandina Volcano in 1968 (Howard et al., 2018). Interferometric synthetic aperture 
radar (InSAR) data show both eruptive and precursory ground deformation on these caldera volcanoes, four of 
which have erupted since 2000 (Amelung et al., 2000; Bernard et al., 2019).

Wolf volcano is the highest and one of the most active volcanoes in the Galápagos Islands. Young lava flows 
have covered a large portion of the volcano's subaerial surface especially on the southeastern half of the volcano 
(Chadwick and Howard., 1991; Geist et al., 2005). It has a well-developed arcuate summit and radial flank erup-
tive fissure system. Wolf volcano has experienced eight eruptions during the past 100 years (Bernard et al., 2019). 
Recent eruptions at Wolf volcano occurred in 1982 and 2015, producing lava fountains and flows within the 
summit caldera and on the flanks. The estimated net areal coverage of subaerial lava during these two eruptions 
is about 33 km 2 (Bernard et al., 2019).
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alternative view of how magma is fed into radial dikes during flank eruptions.
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from a radial fissure on the SE flank, which was different from the 2015 eruption that mainly occurred inside 
the caldera. We track the sequence of ground deformation before, during and after the 2022 eruption using 
InSAR data. We find that Wolf volcano experienced continuous inflation before the 2022 eruption, followed by 
deflation during and after the eruption, resulting in complex ground deformation within and beyond the caldera 
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Fernandina volcano and may allow for improved forecasts of the location and style of future eruptions on the 
Galapagos Islands.
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Given that Wolf volcano is in a remote and uninhabited area, where no in situ geodetic and geophysical instru-
ments have been installed to monitor volcanic and earthquake activity, satellite remote sensing data provide 
essential information to understand the course of deformation associated with eruptions, and to track the lava 
flows they produce. A dense time-series of satellite optical imagery shows the emplacement of lava flows from 
9 January to 16 April 2022 (Figure S1 in Supporting Information S1). At least four active fissures opened from 
higher to lower altitudes trending about 141° on the southeastern flank (Figure 1). One lava flow reached about 
15 km from the highest eruptive fissure on 11 January 2022. The activity progressed to the lower flank fissure, 
sending out fresh lava on 16 January 2022. By 16 April 2022, the lava had traveled about 18.5 km from the 
uppermost vent, covering a total subaerial area of about 31 km 2. No active lava flows were observed after 20 
April 2022.

2. Data and Methods
2.1. Subaerial Lava Evolution From Optical Imagery

We collected high-resolution satellite optical images to track the evolution of lava flows during the 2022 eruption 
(Sentinel-2, Landsat-8/9, PlanetScope) (Figure S1 and Table S1 in Supporting Information S1). For the optical 
data with multiple thermal bands (e.g., Sentinel-2 and Landsat-8/9), we applied a clustering algorithm to consider 

Figure 1. Locations of recent eruptions in the western Galápagos Islands. (a) Polar charts and mapped flows show the 
dates and directions of recent lava flows from historical eruption records, letter at center of each polar chart is the first letter 
of each volcano name (Bagnardi et al., 2013; Bernard et al., 2019, 2022; Chadwick et al., 2011; Galetto et al., 2020; Geist 
et al., 2008; Rowland et al., 2003; Teasdale et al., 2005; Vasconez et al., 2018). The 3 arc-second bathymetry map is from the 
National Oceanic and Atmospheric Administration (https://www.ncei.noaa.gov/maps/bathymetry/). The dashed box shows the 
areas of (b) and (c). Inset shows the location of Galápagos Islands in relation to Ecuador and South America. Ascending and 
descending SAR image frames are shown in red and yellow rectangles. (b) Color-coded areas represent the evolution of lava 
flows from January to April associated with the 2022 eruption. Eruptive fissures are marked as yellow dashed lines. The dark-
red polygon indicates the total coverage of lava flows with an estimated area of 31 km 2. Mapped historical eruptive fissures 
are shown as black lines. (c) 3D surface displacements of the 2022 eruption from InSAR LOS and azimuth displacement 
data. The background color map shows vertical and arrows indicate horizontal displacements. The gaps in data coverage with 
background topography (gray) denote areas without reliable InSAR deformation retrievals due to the loss of coherence. The 
surface projections of the modeled ring fault and flank dike are shown in magenta.
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both the spectral and spatial properties (Massimetti et al., 2020). First, the active hot-spot pixels were grouped by 
four reflectance indices using the short-wave infrared (SWIR) and near-infrared (NIR) bands (Bands 12-11-8A 
for Sentinel-2, and Bands 7-6-5 for Landsat), as follows:

C =
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 (1)

The first two indices represent the hot-spot-contaminated pixels, and the third and fourth conditions correspond 
to the remaining thermally saturated pixels and reflective pixels, respectively. Therefore, the pixels that satisfy 
either of these conditions are labeled as the hot-spot candidates. We then formulated an empirical thermal index 
from a thermal band combination 𝐴𝐴 TI = SWIR1 + SWIR2 + NIR as the proxy of lava temperature allowing us to 
perform a frequency distribution analysis. The pixels in the lower tail of the thermal distribution were removed 
owing to possible contamination (e.g., halo and blurring) from surrounding lava flows. For the single-band ther-
mal image (i.e., PlanetScope), we directly set the cut-off threshold on the NIR band by maximum interclass 
variance to map the fresh lava. Because of the dense cloud coverage and substantial ash emissions, we manually 
delineated the total coverage of lava fields from post-eruption optical images and SAR amplitude data.

2.2. InSAR Data Processing

We used the ISCE software (Rosen et al., 2012) to undertake the interferogram processing of SAR data from the 
Japanese Aerospace Exploration Agency's ALOS-2 and the European Space Agency's Sentinel-1 satellites. We 
applied the network-based enhanced spectral diversity (Fattahi et al., 2017) method for coregistration to ensure 
a 1/1000-pixel accuracy. The topographic phase components were estimated from the one arc-sec Shuttle Radar 
Topography Mission Digital Elevation Model (SRTM DEM), and we filtered and unwrapped the interferograms 
using the power spectrum filter and the minimum cost flow method, respectively. InSAR measures ground defor-
mation along the radar line of sight (LOS) direction. We also used the multiple aperture InSAR method to calcu-
late horizontal displacements in the flight direction using ALOS-2 data (Bechor & Zebker, 2006). The azimuth 
deformation was then combined with the LOS displacements to resolve the 3D displacements associated with 
the 2022 eruption (Fialko et al., 2001). The posteruptive deformation maps were constructed using descending 
Sentinel-1 SAR images between 29 January and 14 September 2022. Only a few scenes were available in the 
ascending orbit during the posteruptive period, because of a power bus failure on the Sentinel-1B satellite. The 
resultant interferograms were resampled to 60 m spatial resolution and geocoded to the World Geodetic System 
1984 geodetic datum.

To resolve the temporal evolution of surface displacement and mean velocity, we used a linear optimization small 
baseline subsets method with a weighted least squares estimator provided by the Mintpy software package (Zhang 
et al., 2019). We processed 242 ascending and 315 descending Sentinel-1 SAR SLC images between 17 July 2015 
and 14 September 2022. Each acquisition was paired with its five nearest images, generating 1111 ascending and 
1555 descending interferograms (Table S2 in Supporting Information S1). We masked out the incoherent areas 
within the caldera that coincided with the erupted lavas from the 2015 event, where lava cooling and compaction 
perturb the signal (Poland & Carbone, 2016; Xu & Jónsson, 2014). We corrected the phase unwrapping errors 
based on the interferogram phase closure triplets. After solving the raw phase time-series, we separated the 
tropospheric delay using the ERA5 reanalysis products (Hersbach et al., 2020) from the European Center for 
Medium-range Weather Forecasts and corrected the topography-correlated atmospheric noise from the phase 
velocity history in the time domain (Fattahi & Amelung, 2013).

2.3. Data Inversion Method

We started by modeling the co-eruptive InSAR data because these data show two apparent deformation sources. 
These are a shallow dike feeding the eruptive fissures on the southeast flank and another source responsible 
for the volcano-wide deformation. We modeled these sources using rectangular dislocations (Okada, 1985) by 
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assuming a homogeneous and isotropic elastic half-space, ignoring the effects of topography in the modeling 
(Williams & Wadge, 2000). Many existing studies have shown that including the topography in the modeling 
broadens the predicted deformation, but the effects are secondary (Xu et al., 2016).

We subsampled the data points using the quadtree method (Jónsson, 2002) and weighed the data according to 
their variance. We first developed a model of the shallow source on the southeast flank as it produces a distinct 
deformation pattern associated with a dike intrusion. We used the mapped fissures from high-resolution optical 
imagery (Figure S1 in Supporting Information S1) to set the location and strike of the dike. We then searched for 
its optimal dip and uniform opening that minimizes the weighted root-mean-square misfit between the cumulative 
deformation and the model predictions. We estimated the best-fitting model parameters by using a Monte Carlo-
type simulated annealing algorithm (Cervelli et  al.,  2001), followed by a gradient-based method. Finally, we 
applied least squares inversion to determine the distributed finite dike opening that best fits the InSAR datasets.

Once the source parameters of the dike were found, we estimated the parameters of the deformation source within 
the caldera. Previous studies have suggested that a two-sill model, or a combined deep sill and ring fault model 
can match the observed ground deformation within and outside the caldera (Liu et al., 2019; Stock et al., 2018; 
Xu et al., 2016). The two-sill model assumes that the deep and shallow sources are hydraulically connected, while 
the combined deep sill and ring fault model assumes that when the deep sill expands, it might trigger slip on 
the lowermost part of the ring fault, leading to a concentration of deformation within the caldera. However, this 
model has not yet been tested using InSAR data.

Because dikes often intrude along the ring fault within caldera volcanoes in nature (Gudmundsson et al., 2016) and 
circumferential and radial dikes may alternate in time on a given volcano flank (Chadwick & Dieterich, 1995), we 
propose a new model scenario that involves ring fault slip together with opening and closing of the ring fault zone 
due to magma intrusion and withdrawal in the years leading up to and during the 2022 eruption at Wolf volcano. 
That is, the ring fault zone acts both as a roughly circular dike structure (effectively a circumferential dike) and 
also accommodates vertical shear during the caldera inflation/deflation cycle. This proposed model allows us 
to examine the relationship between the volcano-wide deformation and the deep source. We explore how the 
observed ground deformation before, during and after the 2022 eruption can constrain the source parameters. We 
compare the RMS data misfit of this model with that of the two previously proposed source configurations (Liu 
et al., 2019; Xu et al., 2016) to find the optimal model and evaluate the influence of replacing the deep sill by a 
ring fault with both slip and opening/closure.

We approximate the ring fault by a cylindrical fault plane with a vertical dip, allowing discrete fault patches to slip in 
the dip-direction, as well as to open and close during times of magma intrusion and loss. In this context, we define 
reverse slip along the ring fault as due to the inside of the cylinder moving upwards and normal slip as the inside 
moving downward. The steep ring fault geometry is consistent with predictions from experimental studies and 
observations elsewhere (Bell et al., 2021; Liu et al., 2019). The location of the caldera ring fault is fixed to the outline 
of the caldera, and the bottom reaches to 6 km beneath the caldera floor where it meets a deep sill-like reservoir 
found in previous studies (Geist et al., 2005). Once the geometry of the ring fault is set up, we apply least squares 
inversion to determine the distribution of finite opening/closure and slip along the ring fault for the co-eruptive 
InSAR datasets. Because no ascending Sentinel-1 data are available before January 2017 and after March 2022, we 
use the ascending and descending pre-eruptive data between January 2017 and January 2022 and the descending 
post-eruptive data to estimate the finite source values of the ring fault in a linear least squares inversion, respectively.

2.4. Stress Change Calculations

We use Coulomb 3 software (Lin & Stein,  2004) to calculate the static normal-stress change transferred to 
the 2022 dike plane and the ring fault from the 2017–2022 ring-fault opening and reverse-slip model inverted 
from the InSAR time-series deformation. Positive normal-stress changes indicate dike unclamping. During the 
normal-stress calculation, the source fault is the modeled vertical ring fault, and the targeted receiver faults are 
the ring fault itself and the radial dike that fed the 2022 eruption.

3. Results
3.1. Pre-Eruptive Deformation During 2015–2022

We used InSAR data acquired by the Sentinel-1 satellite between 17 July 2015 and 5 January 2022 to map the 
ground deformation before the 2022 flank fissure eruption. A stack of the pre-eruptive interferograms shows 

 19448007, 2023, 14, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
103704 by chen haohou - C

apital N
orm

al U
niversity , W

iley O
nline L

ibrary on [23/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

XU ET AL.

10.1029/2023GL103704

5 of 10

a distinct pattern of volcano-wide deformation with the maximum LOS displacement of ∼34 cm located near 
the center of the caldera (Figures 2a–2c and Figure S2 in Supporting Information S1). The similar deformation 
pattern in both ascending and descending orbits (Figure S2 in Supporting Information  S1) suggests that the 
ground deformation is dominated by surface uplift. The descending-orbit InSAR time-series shows that the inner 
caldera started to uplift immediately after the 2015 eruption, with an average LOS uplift rate of about 6 cm/yr in 
both orbits (Figure S2 in Supporting Information S1).

3.2. The January 2022 Eruption and Post-eruptive Deformation

We used the ALOS-2 descending data collected on 2 January 2022 and 13 February 2022, Sentinel-1 descending 
data on 5 January 2022 and 29 January 2022 and ascending data on 4 January 2022 and 9 February 2022 to generate 
three co-eruptive interferograms. The observed ground deformation resembles that associated with previous erup-
tions from radial fissures at Fernandina volcano in 1995 and 2009 (Bagnardi et al., 2013; Chadwick et al., 2011; 
Jónsson et al., 1999). The descending ALOS-2 and Sentinel-1 interferograms are consistent and show a local, semi-
circular zone of positive LOS displacement on the eastern side of the radial fissure, which is superimposed on a 
broad area of negative LOS displacement covering the summit caldera and a large part of the island (Figures 2d–2f 
and Figure S3 in Supporting Information  S1). The ascending Sentinel-1 interferogram shows negative LOS 

Figure 2. Unwrapped descending orbit InSAR data before, during and after the dike emplacement in comparison with 
model predictions. (a) Pre-eruption surface displacement in radar line-of-sight observed from Sentinel-1satellite (7 January 
2017–5 January 2022) and (b), modeled displacement. (c), Observed (black, with gray shaded one-sigma error envelope) 
and modeled (red) displacements along profile P-P’. (d–f), Same as a-c, but for the 2022 co-eruption displacements obtained 
from the ALOS-2 satellite (2 January 2022–13 February 2022). (g–i), Same as a-c, but showing the post-dike emplacement 
deformation from Sentinel-1 satellite (29 January 2022–14 September 2022).
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displacements covering both the summit and the eruptive fissure. This suggests that the summit is dominated by 
subsidence, while the eruptive fissure has caused significant horizontal ground deformation on the flank.

Considering that the InSAR data are much less sensitive to north-south displacements, we also calculate the 
azimuth offsets using the ALOS-2 data (Figure S3 in Supporting Information S1). The interferograms and the 
azimuth-offset measurements reveal the complete 3D ground deformation covering the 2022 eruption. The 3D 
displacement map shows a broad, volcano-wide subsidence zone, with the maximum subsidence of about 56 cm 
centered on the caldera (Figure 1c). The deformation signals on the southeast flank are caused by the dike intru-
sion and eruptive fissure showing up to 34 cm of uplift and 70 cm of horizontal displacement.

The stack of post-eruptive descending Sentinel-1 interferograms between 29 January 2022 and 14 September 
2022 shows a broad area of negative LOS displacement covering the edifice with a maximum LOS displacement 
of 5  cm, indicating that the volcano continued to subside after the 2022 eruption (Figures 2g–2i). Localized 
subsidence is also clearly seen over the parts of the flank dike that did not reach the surface close to the summit.

3.3. Geodetic Modeling Results

The observed pre-eruptive deformation can be explained by our ring fault model with both reverse faulting and 
opening (Figure 3a). The modeling results show that the caldera deformation is highly asymmetric, with the 
majority of fault slip occurring along the southern caldera rim, where the eventual eruptive activity occurred 
(Bernard et  al.,  2022). The model fits the deformation data well with an RMS value of 1.3  cm. The largest 
opening and reverse fault motions occurred at depths between 2.5 and 5 km with the maximum opening of 1.6 m 
at 3.5 km and reverse slip of 1.2 m at 4 km depth. A total volume change of about 3.8 × 10 7 m 3 (Table S3 in 
Supporting Information S1) is estimated to have been intruded as magma within the ring fault prior to the 2022 
eruption and after July 2015, indicating that the average annual magma inflow rate was about 0.6 × 10 7 m 3/yr.

The co-eruptive deformation indicates a combination of two major deforming sources: the radial dike expanding 
with magma and ring faulting and volume loss along the inner caldera. This summit ring fault and radial dike 
model accurately reproduce the elliptical deformation pattern (Figures 2d–2f and Figure S3 in Supporting Infor-
mation S1). The RMS misfit between the ALOS-2 data and the model is 1.2 cm. The radial dike was found to be 
dipping 58° to the northeast in the southeast flank with a maximum opening of 1 m at the surface. The strike of 

Figure 3. Inversion results and tensile stress changes of the caldera ring fault and flank dike. (a) Opening and reverse fault slip along the modeled ring dike before 
the 2022 eruption. (b) Tensile stress changes caused by caldera inflation before the 2022 eruption. The source fault is the modeled vertical ring fault, and the targeted 
receivers are the radial dike and the ring fault itself, respectively. Positive tensile stress changes (red) indicate unclamping of the dike plane, whereas the ring fault is 
under compression due to opening (blue). (c) Co-eruption closure and normal fault slip along the modeled ring dike and opening along the modeled flank dike during 
the 2022 eruption, respectively. d, Only ring-fault closure is found after the 2022 eruption.

 19448007, 2023, 14, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
103704 by chen haohou - C

apital N
orm

al U
niversity , W

iley O
nline L

ibrary on [23/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

XU ET AL.

10.1029/2023GL103704

7 of 10

the dike was fixed at 141°, matching the eruptive fissures. The best fit model includes normal-faulting of the ring 
fault of up to 1 m at depths between 2 and 5 km (Figure 3c). In addition, the average closure of the caldera ring 
fault at 1–5 km in the best-fit model is about 0.4 m, which can explain the widespread subsiding pattern in the 
post-eruptive period. A total volume of about 3.8 × 10 7 m 3 is estimated from the inversion of pre-2022 inflation 
data to have been extruded before the 2022 eruption, whereas during the 2022 eruption about 5.5 × 10 7 m 3 is 
associated with the ring dike closure and about 0.7 × 10 7 m 3 the flank dike opening (Table S3 in Supporting Infor-
mation S1). It should be noted that this calculation assumes that the difference between the ring dike closure and 
flank dike opening provides an estimate of extruded volume. The two-sill model and the combined ring-fault-sill 
model also show a good fit to the data, but the RMS misfit is higher. The best-fit two-sill model suggests that the 
deep sill is about 8 km long and 4 km wide, oriented NE-SW and deflates by 0.6 m, while the shallow sill is smaller 
in size (Table S4 in Supporting Information S1). The best-fit combined ring-fault-sill model suggests that the ring 
fault slip can produce similar deformation as that of the shallow sill. The ring fault closure model also fits well 
with the observed 2015 eruptive deformation (Figure S4 in Supporting Information S1) and the post 2022 eruptive 
deformation leading to a volume  decrease of 6.1 × 10 7 m 3 and 2.3 × 10 7 m 3, respectively (Table S3 in Supporting 
Information S1).

To assess the stress interaction between the caldera inflation and the 2022 flank radial dike emplacement, we 
calculated the tensile stress changes on the 2022 radial dike plane resulting from the modeled ring fault sources 
within the Wolf magmatic system (Figure 3b). The stress change modeling shows that the pre-eruption opening 
and slip on the ring fault system unclamped (positive tensile stress change) the 2022 radial dike plane with the 
largest unclamping of over 4 MPa occurring at the end to the dike plane closest to the ring fault. This suggests that 
the stress changes caused by the preceding caldera ring fault activity promoted the emplacement of a radial dike 
on the SE volcano flank in 2022. This is similar to the idea that circumferential and radial dikes may alternate in 
time, proposed by Chadwick and Dieterich (1995). In comparison, the deep sill model causes only minor positive 
normal stress changes along the dike plane (Figure S5 in Supporting Information S1).

4. Discussions
Several recent studies of volcanoes in the western Galápagos Islands have suggested that the structure of the plumb-
ing system involves hydraulically connected shallow crustal reservoirs located below the summit calderas at differ-
ent depths or a combination of a ring fault system and a single deep magma reservoir (Bagnardi et al., 2013; Bell 
et al., 2021; Chadwick et al., 2011; Liu et al., 2019; Xu et al., 2016). In these models, the broad volcano-wide defor-
mation during the co-eruptive period is mainly caused by volume decrease of the deep magma reservoir, whereas 
the ring fault motion or contraction of a shallow magma reservoir localizes subsidence within the caldera. However, 
the shape of the deep source would need to be elongated in one direction to fit the broad asymmetrical ground 
deformation at Wolf volcano (Figures S6 and S7 in Supporting Information S1). Although both the existing two-sill 
model (Xu et al., 2016) and the combined ring-fault-sill model (Liu et al., 2019) fit the volcano-wide deformation 
well, they left the ground deformation around the summit unexplained. Our proposed ring fault opening/closure 
model does not include a deep magma reservoir explicitly, but it fits all observed co-eruptive ground deformation 
with the lowest RMS misfits and outperforms the previous two-sill model and the combined ring-fault-sill model 
(Figures S6 and S7 in Supporting Information S1). Our model is consistent with the modeling results of Chadwick 
and Dieterich (1995) in that the ring fault activity makes the eventual radial dike more likely. This implies that the 
asymmetrical opening/closure of the model ring fault can produce volcano-wide deformation similar to that caused 
by a deep magma reservoir. These results highlight that the influence of a caldera ring fault that can open and close 
needs to be considered in addition to a reversal of ring fault slip when studying ground deformation at Wolf volcano.

Interestingly, recent eruptions have tended to be repeated within the same sector on individual Galápagos volca-
noes (Figure 1a): Sierra Negra in the north, Fernandina in the south, Cerro Azul in the east and Wolf in the 
southeast, including both radial and circumferential eruptions. Asymmetrical kinematics of ring-fault motion has 
been observed during the 1968 Fernandina caldera collapse, the 2000 Miyakejima eruption, the 2014 Bárdar-
bunga caldera eruption (Glastonbury-Southern et al., 2022; Li et al., 2021) and the 2018 Kilauea caldera collapse 
(Anderson et  al.,  2019). During the 1968 trapdoor collapse of Fernandina caldera (Howard et  al., 2018), the 
southeastern part of the caldera dropped more than 300 m, while only minor subsidence occurred on the opposite 
side. During the 2000 Miyakejima eruption, the asymmetrical collapse took place along an elliptical caldera 
ring fault on one side of the caldera floor. The onset of the 2018 eruption at Sierra Negra included intra-caldera 
reverse faulting and shallow magma migration in the north (Bell et  al.,  2021). The presence of intra-caldera 
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benches  formed during at least two historical collapses on the western side of Wolf volcano and fresh subae-
rial lavas seen in the southeast, suggest that the southeastern side of the volcano is now more active and the 
magma bodies may have shifted laterally through time (Geist et al., 2005). This implies that asymmetrical caldera 
collapse continues to be most likely on the southeastern side of Wolf volcano in the future. It is also interesting 
that Wolf exhibits a similar alternating cycle between radial and circumferential eruptions as on Fernandina and 
Cerro Azul volcanoes, with radial eruptions in 1982 and 2022, but a circumferential intrusion in 2015 (Bagnardi 
& Amelung, 2012; Xu et al., 2016). This shows how the stresses imposed by one eruption can influence the next; 
a caldera-inflation triggered dike intrusion and fissure eruption can lead to local rotations of the principal stress 
field that in turn influences future eruption patterns (Chadwick & Dieterich, 1995).

Magma migration from depth to intrude the crust or erupt at the surface can produce different types of volcanic 
earthquakes that are specific to caldera ring faults (Shuler et al., 2013). The estimated moment of the modeled 
shear-dislocation sources associated with the 2022 eruption corresponds to an earthquake of magnitude 5.9, 
assuming a shear modulus of 30 GPa. This is comparable to the largest reported event of Mw 5.4 during the onset 
of the 2018 eruption at Sierra Negra volcano (Vasconez et al., 2018). However, the largest reported earthquake 
during the time interval was a Mw 2.4 event, prior to the eruption (Bernard et al., 2022). Since earthquake records 
cannot account for the estimated moment release, ring fault activity likely involves dominantly aseismic shear and 
opening of a magma-filled fault zone.

Caldera collapse happens when a deep magma chamber drains rather abruptly. The presence of large calderas in 
the western Galápagos Islands indicates that these volcanoes have repeatedly undergone such collapses in their 
history. Our results suggest that magma intruded into the deep crustal reservoir beneath the caldera and exerted 
pressure on the piston beneath the caldera causing the upward motion along the ring fault and opening during the 
inflation period prior to the 2022 eruption (Figure 4). The repeated fault slip and opening of the caldera-bounding 
ring fault promoted the vertical and radial propagation of magma. The downward motion and closure of the 
caldera ring fault during the 2022 eruption likely occurred because the magma pressure in the system dropped 
and the magma reservoir roof collapsed as magma was fed to the surface. The caldera ring fault can thus involve 
both opening-mode fractures and dip-slip structures, which are important to consider in future modeling. Our 
study highlights that the asymmetry of ring fault activity influences the eruptive styles, locations, and patterns 
at Wolf volcano. Similar mechanisms of magma storage, edifice structures, and eruptive processes may occur at 
other caldera volcanos in the Galápagos Islands.

Conflict of Interest
The authors declare no conflicts of interest relevant to this study.

Figure 4. Schematic cartoon illustrating the preferred scenario of the magma plumbing system of Wolf volcano. (a) Pre-eruptive inflation and reverse ring-fault 
motion. (b) Radial dike emplacement, co-eruptive deflation, and normal faulting on the ring fault. (c) Post-eruptive deflation. The figure is not to scale for visualization.
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Data Availability Statement
ALOS-2 data (No. ER3A2N521) can be downloaded from https://gportal.jaxa.jp/gpr/. Sentinel-1 data can be 
downloaded from: https://search.asf.alaska.edu/#/. The processed unwrapped InSAR data used in this study can 
be found in Zenodo (https://doi.org/10.5281/zenodo.7747484).
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