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Sentinel-1A/B data are crucial for retrieving numerical information about surface phenomena and pro-
cesses. Coregistration of terrain observation by progressive scans (TOPS) data is a critical step in its
application. TOPS data must be fundamentally co-registered with an accuracy of 0.001 pixels. However,
various decorrelation factors due to natural vegetation and seasonal effects affect the coregistration
accuracy of TOPS data. This paper proposed an enhanced spectral diversity coregistration method for
dual-polarimetric (PolESD) Sentinel-1A/B TOPS data. The PolESD method suppresses speckle noise based
on a unified non-local framework in dual-pol Synthetic Aperture Radar (SAR), and extracts the phase of
the optimal polarization channel from the denoised polarimetric interferometric coherency matrix.
Compared with the traditional ESD method developed for single-polarization data, the PolESD method
can obtain more accurate coherence and phase and get more pixels for azimuth-offset estimation. In bare
areas covered with low vegetation, the number of pixels selected by PolESD is more than the Boxcar
method. It can also correct misregistration more effectively and eliminate phase jumps in the burst edge.
Therefore, PolESD will help improve the application of TOPS data in low-coherence scenarios.
© 2023 Editorial office of Geodesy and Geodynamics. Publishing services by Elsevier B.V. on behalf of
KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction TerraSAR-X and now represents the standard observation mode for
Over the past two decades, Interferometric Synthetic Aperture
Radar (InSAR) technology has gradually developed into an effective
tool for monitoring surface changes. The increasing abundance of
SAR satellite data strongly bolsters the development of InSAR
technology. For instance, the Sentinel-1A/B data are released with
free access and are widely utilized by researchers and engineers to
study surface deformation efficiently [1]. Terrain observation by
progressive scans (TOPS) observation mode was first applied to
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Sentinel-1A/B [2]. Notably, TOPS can achieve an observation width
of 250km� 250km, thereby alleviating the problems of sector and
azimuth variation in the conventional ScanSARmode by controlling
the antenna movement along the track direction [2].

Similar to the ScanSAR mode, the difficulties emerge from the
large Dopplers that produce a significant coupling between the
range and azimuth signals. The non-orthogonal acquisition geom-
etry causes a phase ramp (including range and azimuth) in the
impulse response functions for a squint angle. Thus, accurate cor-
egistration of images acquired at different times is a key step in
advancing the application of InSAR technology [3]. The premise for
extracting interferometric signals in SAR images is coherence,
which increases with coregistration accuracy. The phase ramp in
azimuth introduces a phase bias if an azimuth is misregistered (i.e.,
so-called coregistration error). The phase bias can be expressed by:

D4¼ 2pfdcDt (1)

where fdc is the Doppler centroid, which is the average Doppler
frequency, and Dt is the slow displacement [4].
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The azimuth shift limits the application of Sentinel-1A/B data in
large-scale deformation monitoring. A coregistration accuracy of
about 0.001 pixels is required to limit the azimuth shift to a few
degrees. Prats-Iraola et al. [4] have proposed applying spectral di-
versity for the overlap region among bursts to address the azimuth
shift problem driven by misregistration. This method has been
called the enhanced spectral diversity (ESD). The general process of
TOPS data coregistration includes two steps: (1) the initial cor-
egistration based on geometry and (2) the coregistration by ESD [4].

The accuracy of the ESD mainly depends on the signal-to-noise
ratio of the interference phase of the overlap region between
sequential bursts [3]. In general, there are two ways to improve the
accuracy of ESD. First, one can construct more robust coregistration
networks for time-series SAR images to estimate the ESD phase
using methods such as weighted least squares. The coregistration
network includes Network-based ESD (NESD) based on temporal
coherence and an improved network based on estimated coherence
and graph theory [5e9]. Alternatively, one can improve the
coherence of the overlap region in the following way. Sakar et al.
[10] proposed an improved ESDmethod based on an estimator that
utilizes all burst-wise and beam-wise overlap regions to refine a
single common azimuth shift. Ma et al. [9] assumed the absence of
decorrelation difference during the imaging time interval for the
overlap region. In this way, the bias and variance can be reduced by
combining two consecutive burst SLC samples. The same estimator
has been successfully applied to the coregistration method based
on the Dijkstra and all-pairs shortest path (APSP) networks [7,9].
The above methods for improving phase quality are all based on
single-polarization (single-pol) data. Such methods often fail in
images with prominent decoherence, such as scenes affected by
vegetation or seasonality. To date, some studies successfully
demonstrated surface deformation monitoring using the multi-
polarimetric image, indicating that polarimetric InSAR has excel-
lent potential in deformation monitoring [11].

As the principles of both ESD and interferometry are based on
the coherence of SAR images, the traditional single-pol ESDmethod
was improved by increasing the dual-polarization (dual-pol)
interference phase in this study. The main aim is to increase the
samples, and enhance the coherence, thereby increasing the cor-
egistration accuracy of ESD. The primary contributions of this
research are summarized as follows.

a) We present an ESD method for dual-Polarimetric (PolESD) TOPS
data. The PolESD method suppresses speckle noise based on a
unified non-local framework in dual-pol SAR and improves the
interference performance of SAR images. Note that the inter-
ferometric phase, corresponding to the optimal polarization
channel, was obtained by the Best method [12].

b) Our method is applied to typical low coherence scenarios and
compared with traditional single-pol coregistration methods.
The results show that the PolESD method has better coregis-
tration accuracy than the traditional method.
2. Traditional single-polarization ESD method

The ESD method for coregistration only requires overlap re-
gions, which significantly improves the efficiency of accurate cor-
egistration. However, the ESD method has high sensitivity. To avoid
the ESD phase wrapped, we use the primary and secondary SLC
orbits and terrain height to generate an initial lookup table and
then calculate the multi-look intensity images offset to achieve an
initial coregistration accuracy of about 0.01 pixels.

We can assume that: (a) P and S are two images after initial
coregistration, (b) they have the same Doppler centroid frequency
2

fc, (c) they share a standard bandwidth B, and (d) there is only
constant misregistration between the images [3,4]. The ESD phase
can be calculated for each overlap region as follows:

4err ¼ arg
��

Pi$S
*
i

�
$
�
Piþ1$S

*
iþ1
�*�

(2)

where Pi and Si refer to the i th primary and secondary complex
bursts, and Piþ1, Siþ1 refer to the ðiþ1Þ th primary and secondary
bursts; * indicates the conjugate operator, and argf $g gives the

phase of a complex number. The azimuth shift cDt can be calculated
as follows:

cDt ¼ argmax
Dt
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p
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(3)

where Dfovl is the Doppler centroid frequency difference in the
overlap region, Dt is a constant azimuth misregistration time. 4err;p
is the ESD phase for the candidate pixel p of each overlap region [6].
Therefore, the azimuth misregistration Dx of the overlaps of i and
iþ 1 burst can be expressed by:

Dx¼Dt=t ¼ 4err
�
2pDfovlt (4)

where t is the azimuth time interval. As the estimation accuracy of
4err is only related to the standard deviation of the noise phase,
increasing the number of samples and improving the coherence
can yield more accurate misregistration.
3. Improved ESD method based on dual-polarimetric data
(PolESD)

This study mainly improved the traditional ESD-based method
by enhancing the dual-pol interference phase. On the one hand, the
speckle in the image can be more robustly reduced using the
polarization-based method. On the other hand, the polarimetric
optimal can select a better channel in the polarimetric space for
exploitation. The principles of this method are described below.
3.1. Construction of polarimetric interferometric coherency matrix
in overlap regions

For the dual-polarization Sentinel-1A/B TOPS data, in the
sequential bursts, two overlap regions can be extracted from the
primary and secondary images, respectively. They can be reflected
by the Sinclair backscattering matrices as Pi, Piþ1, Si and Siþ1. For Pi
and Si:

Pi ¼
�
Pi;VV Pi;VH

	
; Si ¼

�
Si;VV Si;VH

	
(5)

Then, the four-dimensional polarimetric interferometric scat-
tering target vector ki can be obtained [13]:

ki ¼
�
Pi;VV Pi;VH Si;VV Si;VH

	T (6)

Calculating the outer product of ki and its conjugate transpose,
4� 4 polarimetric interferometric coherency matrix T i;PolIn can be
expressed by:

T i;PolIn ¼
D
ki$ki

H
E
¼
"
T11 U12

UH
12 T22

#
(7)

where 〈$〉 represents the set average of spatial homogeneous data,
H indicates the conjugate transpose operator. Likewise, the



Fig. 1. Flow chart of the PolESD method based on polarized TOPS data.
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polarimetric interferometric coherency matrix of Piþ1 and Siþ1 can
be represented as T iþ1;PolIn.

3.2. Non-local means (NLM) for reducing speckle noise

Fundamentally, speckle noise is an inherent problem in InSAR. It
generates a strong intensity fluctuation, hindering the image
analysis and plaguing the estimation of interferometric properties.
Hence, speckle noise reduction is essential in polarization data
analysis.

The speckle reduction technique consists of two steps: 1) to
identify homogeneous pixels (HPs) in a predefined or adaptive
search window, and 2) to use the weighted average of the selected
HPs. In this study, the NL-SAR introduced by Deledalle is proposed
to reduce the speckle noise effectively and to estimate complex
coherence robustly, given the unsupervised selection of filtering
parameters [14].

The NL-SAR filter needs to perform a scaling operation on the
non-diagonal elements of the matrix TPolIn to make it full rank, and
use a spatial average-based prefilter to enhance covariance esti-
mation before HP selection. For pixel x, the likelihood ratio test
(LRT)-based patch matching is performed over all surrounding
pixels x0 in a large search window, and the satisfied pixels are taken
as the HPs under a certain threshold. After mapping the weight
wðx; x0Þ from the patch-wise similarity (based on an exponential
kernel), the NLM estimator performs weighted averaging from the
selected sample covariancematrices to suppress the detail-blurring
effect.

bSNLðxÞ¼
P

x0wðx; x0ÞTPolInðx0ÞP
x0wðx; x0Þ (8)

where the full-resolution covariance matrix T 0
PolIn is used instead of

pre-estimated covariances to preserve the image resolution.
To further reduce the signal non-stationarity induced by aver-

aging the different populations, a bias-reduction step is then added
after the NLM estimation by weighting between the non-local es-
timate and the original covariance matrix:

bSNLRBðxÞ¼ bSNLðxÞ þ a
h
TPolInðxÞ� bSNLðxÞ

i
; (9)
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p
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where bSNLRBðxÞ is referred to as the non-local reduced bias (NLRB)
estimate; weight a is computed using the intensity statistics of
multiple polarimetric channels, L is the equivalent number of looks.bINLp ðxÞ and VarNL½Ip�ðxÞ are the weighted mean and variance of the
intensity Ip at pixel x for channel p2f1;2g, respectively. Note that
the non-local estimate is retained when a is close to 0, and the
original (noisy) empirical covariances are applied to replace the
non-local estimate when the value is close to 1.

3.3. Best method

A necessary way to improve interference performance using
polarization data is to select the optimal polarization channel ac-
cording to the criteria. The best method is choosing the polari-
metric channel that provides the highest coherence for each pixel
[12].
3

In T i;PolIn, the polarimetric coherence coefficients for the VV and
VH channels can be quantified using (10):

gi;VV ¼
U12f1;1gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T11f1;1gT22f1;1g
p ;gi;VH ¼ U12f2;2gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T11f2;3gT22f2;2g
p

(10)

The absolute value of the polarimetric coherence coefficient is
the coherence, and the amplitude angle is the phase. The best
method selects the one with more excellent coherence of the two
complex coherence coefficients [12], and the corresponding inter-
ference phase is 4i;best ¼ argðgi;bestÞ.

Likewise, for T iþ1;PolIn, the optimal polarimetric coherence co-
efficient giþ1;best and the corresponding phase 4iþ1;best ¼
argðgiþ1;bestÞ can be obtained. At last, the optimal coherence gbest

and ESD phase 4err (misregistration) of the overlap region can be
obtained by (11) and (12):

gbest ¼
���gi;best��þ ��giþ1;best

���.2 (11)

4err ¼ arg
�
gi;best$g

*
iþ1;best

�
(12)

Compared with the exhaustive search polarimetric optimization
(ESPO) method in all polarization spaces, the best method selects
the optimal unit complex vector in the existing polarization space.
This allows for avoiding the huge computational burden and the
instability that ESPO may encounter in the dual-polarization data.

This paper proposes an enhanced spectral diversity coregistra-
tion method for the dual-pol TOPS data (PolESD). The PolESD
method allows accurate coregistration in the low-coherence scene.
The flowchart of the PolESD method is shown in Fig. 1.
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First, the overlap region between the bursts was extracted from
the primary and secondary images after initial coregistration. In
Fig. 1, only two consecutive bursts are exemplified. The extracted
overlap regions are Pi, Piþ1, Si and Siþ1: The matrix T i;PolIn of the
overlap region was constructed. A homogeneous region was
extracted from the matrix to evaluate the noise, which was further
used to reduce the speckle noise. The optimal polarization channel
was extracted from the denoised matrix T i;PolIn using the best
method, alongside the corresponding coherence and phase. The
ESD phase 4err can be obtained by subtracting the masked phase,
and the azimuth shift can be calculated by (4).

4. Data

Two dual-pol Sentinel-1A/B images (Descending, Path 134),
covering the Tianchi Volcano (China/North Korea), were used to
evaluate the effectiveness of the proposed method, and the
coverage of the images is shown in Fig. 2. The perpendicular
baselines of the image were 54 m, and the acquisition time was
June 13, 2018, and June 25, 2018.

In the SAR images, the pixels that can be used for coregistration
in the overlap regions are concentrated near the craters. These
pixels represent areas covered by tundra or bare igneous rocks with
an average elevation above 1700 m. Beyond this range, it is chal-
lenging to obtain a reliable phase due to the decoherence of volume
scattering caused by vegetation coverage. Therefore, for TOPS data
with vegetation cover, the coregistration accuracy depends on the
phase estimation of small samples.

5. Experiment result and analysis

In this study, the polarimetric information was introduced for
TOPS coregistration. The four experiments for comparison were
established: (1) original (VV channel), (2) boxcar (VV channel), (3)
NLSAR (dual-pol), (4) and PolESD. In the coregistration step, the
overlap regions are usually multi-look for fast computation and to
improve coherence. The multi-look operation tends to average the
few pixels that have high consistency with surrounding pixels.
Fig. 2. The scope of the study area. The base map is an optical image acquired by the
Sentinel-2 satellite in August (R: B4, G: B3, B: B2). The white dotted line indicates the
overlap region shown in Figs. 3 and 4. The land cover in the overlap region is mainly
vegetation, with only a few bare areas near the crater and a few buildings in the west
of the overlap region.
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Therefore, to avoid interference by multi-look, a full-resolution
calculation is maintained in this study.

The Boxcar method using a small window (few samples) would
induce an overestimation of coherence in the low-coherence scene.
When using coherence as the selection criterion, the Boxcar
method results in a large number of noise pixels for analysis.
Therefore, a Boxcar filter window size of 9� 9 was selected in this
study, which makes the coherence of the different methods com-
parable. Fig. 3 shows the coherence calculated by different
methods. Without filtering, the coherence was equal to one
(Fig. 3(a)). As seen from Fig. 3, the polarimetric-based method can
more efficiently maintain the details in the image and improve the
coherence.

Fig. 4 shows the phase after filtering by the four methods. As
seen, all different methods significantly improved the phase qual-
ity. The phases in the red box show that clearer boundaries char-
acterized the polarization-based approach. The coherence of the
Boxcar method was slightly lower than the NLSAR or PolESD
methods (Fig. 3), but the phase was smoother compared with the
polarimetric-based methods.

In some scenarios, the effect of phase optimization is often re-
flected in the spatial continuity of the phase. However, it is chal-
lenging to evaluate whether the phase is accurate or not in detail by
only using visual criteria, such as smoothness or roughness. This is
especially true for the low-coherence area, where the spatial cor-
relation of a few high-coherence pixels is unclear. Thus, for the
TOPS coregistration, coherence and the ESD phase distribution can
characterize the statistical quality of the phase.

From Fig. 5, the numbers of stable pixels selected in the building
area by Boxcar, NLSAR and PolESD methods are 230, 355 and 370,
respectively. The polarization-based method is better than the
Boxcar method for selecting stable pixels, and NLSAR plays a
Fig. 3. Coherence estimated by different methods. The red box on the left contains a
few building targets, and the red box on the right is the bare area of the crater.

Fig. 4. The ESD phase estimated by different methods.



Fig. 5. Distribution of coherence, (a) and (b) correspond to the left and right red boxes
in Figs. (3) and (4), which represent the low-density building area and the bare area,
respectively.

Fig. 7. (a) Uncorrected interferogram; (b) uncorrected interferogram after filtering;
(c)e(e) are the interferograms corrected by different methods; A� A’ is the section of
Fig. 8.
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significant role in improving the stable pixels. In bare areas covered
with low vegetation, the number of pixels selected by the three
methods is 281, 1054, and 1486. The number of pixels selected by
PolESD is more than five times that of Boxcar. The number of high-
coherence pixels indicates that the PolESD method can select far
more pixels for estimating the ESD phase in natural scenes than the
traditional method.

Fig. 6 shows the phase distribution in the red box in Figs. (3) and
(4). From Fig. 6 (a), the phase distribution of the three methods is
close, indicating that different methods have similar effects on
selecting stable pixels. The phase distribution estimated by
different methods is inconsistent in the bare area. The ESD phase
estimated by the PolESD method in Fig. 6 (b) is 0.57, while the ESD
phase estimated by Boxcar is 0.49. Taking the building area as a
reference, the average ESD phase is 0.66. The phase difference
estimated by PolESD in the bare area is only 0.09 rad, while the ESD
phase estimated by the Boxcar method is 0.17 rad.

To further compare the correction performance of different
methods, Fig. 7(a)-(e) show the original and thefiltered uncorrected
interferogram and the corrected interferogram by different
methods.

From Fig. 7(b), the PolESD method accurately obtains the azi-
muth misregistration. It corrects the phase jump in the interfero-
gram, while the Boxcar method has obvious phase jumps,
indicating that it contains significant coregistration errors. From
the section of burst edge (Fig. 8), the phase of this method is also
smoother. Therefore, the PolESD method can effectively estimate
misregistration.
Fig. 6. Distribution of phase, (a) and (b) correspond to the left and right red boxes in
Figs. (3) and (4), which represent the low-density building area and the vegetation or
bare area, respectively. Fig. 8. The section of A� A’ in Fig. 7, the black dashed line indicates the burst edge.
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6. Conclusions

In this paper, we proposed the PolESD method to increase the
coherence and phase quality in the overlap regions for dual-pol
TOPS data. The PolESD method suppresses speckle noise based on
a unified non-local framework. Then, the optimal polarization
channel is extracted from the denoised polarimetric interfero-
metric coherency matrix using the Best method. We demonstrate
that the PolESD method can obtain more highly coherence pixels
than the single-pol-based ESDmethod, and the PolESDmethod can
obtain a more accurate ESD phase in the bare area.
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