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Abstract
The spatio-temporal random effects (STRE) model is a classic dynamic filtering model, which can be used to fuse GNSS
and InSAR deformation data. The STRE model uses a certain time span of high spatial resolution Interferometric Synthetic
Aperture Radar (InSAR) time series data to establish a spatial model and then obtain a deformation result with high spatio-
temporal resolution through the state transition equation recursively in time domain. Combined with the Kalman filter, the
STREmodel is continuously updated and modified in time domain to obtain higher accuracy result. However, it relies heavily
on the prior information and personal experience to establish an accurate spatial model. To the authors’ knowledge, there
are no publications which use the STRE model with multiple sets of different deformation monitoring data to verify its
applicability and reliability. Here, we propose an improved STRE model to automatically establish accurate spatial model to
improve the STRE model, then apply it to the fusion of GNSS and InSAR deformation data in the San Francisco Bay Area
covering approximately 6000 km2 and in Southern California covering approximately 100,000 km2. Our experimental results
show that the improved STRE model can achieve good fusion effects in both study areas. For internal inspection, the average
error RMS values in the two regions are 0.13 mm and 0.06 mm for InSAR and 2.4 and 2.8 mm for GNSS, respectively; for
Jackknife cross-validation, the average error RMS values are 6.0 and 1.3 mm for InSAR and 4.3 and 4.8 mm for GNSS in
the two regions, respectively. We find that the deformation rate calculated from the fusion results is highly consistent with
the existing studies, the significant difference in the deformation rate on both sides of the major faults in the two regions can
be clearly seen, and the area with abnormal deformation rate corresponds well to the actual situation. These results indicate
that the improved STRE model can reduce the reliance on prior information and personal experience, realize the effective
fusion of GNSS and InSAR deformation data in different regions, and also has the advantages of high accuracy and strong
applicability.

Keywords Deformation · Spatio-temporal random effects model · Data fusion · GNSS · InSAR time series · High
spatio-temporal resolution

1 Introduction

With the development of GNSS and InSAR technology,
extensive applications have been applied in the field of
geodetic surveying, especially in deformation monitoring
and disaster awareness (Xu et al. 2018; Carlà et al. 2019).
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Because GNSS is a point-oriented technology, limited by
deployment cost and the difficulty of installing instruments
and equipment, it is difficult to ensure that the spatial density
can meet the research needs, and the monitoring accuracy
will be affected by the site layout methods (such as deeply
founded sites and sites mounted to a building) and the exter-
nal environment. Although the spatial resolution of InSAR is
high enough for large-scale monitoring, the temporal resolu-
tion is limited by the satellite revisit period, and the accuracy
is affected by atmosphere (Yu et al. 2020; Xiao et al. 2021),
decorrelation effect, orbital error, and other data processing
errors (Cao et al. 2018). Therefore, in somedeformationmon-
itoring and disaster awareness scenarios, it is difficult for us
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to obtain accurate deformation information through a stan-
dalone monitoring technique. In this case, combining GNSS
and InSAR data can better provide high spatio-temporal res-
olution and precision deformation result, thus providing a
richer data source for geophysical inversion and assisting us
to obtain more reliable inversion results (Bekaert et al. 2016;
Xu et al. 2016; Wan et al. 2018; Aslan et al. 2019).

According to the fusion mode, GNSS and InSAR data
fusion can be divided into four categories:

1) The observation equation is established based on the
common physical quantities reflected by different defor-
mation data. Walters et al. (2014) constructed the equa-
tions of GPS and InSAR with spherical triangle vertex
velocity based on the same strain rate assumption, and
solved by weighted least squares inversion; Fuhrmann
et al. (2015) obtained the linear velocity from single
InSAR, leveling, and GNSS data, then used ordinary
Kriging interpolation and least squares adjustment to cal-
culate the combined velocity field.

2) The difference between the displacement values of dif-
ferent observation methods is modeled and corrected.
Farolfi et al. (2018) interpolated the offset calibration
between GNSS permanent site and InSAR PSI data with
multilevel B-spline model; Neely et al. (2019) fitted the
difference between the GNSS and InSAR displacement
data through second-order polynomial surface.

3) By constructing optimization equations that integrate
multi-source observation data, the parameter solving
is transformed into an equation optimization problem.
Hu et al. (2011) combined the Gibbs energy function
and BFGS method, derived three-dimensional ground
motions from the fusion of InSAR and GPS measure-
ments; Ji et al. (2020) used Markov random field-based
L1 regularization to reconstruct the Gibbs energy equa-
tion, and differential evolution algorithm is used to
minimize the energy function to derive the ground
motion.

4) The spatio-temporal dynamic model is used to describe
the evolution of the displacement fields, and the high
spatio-temporal resolution displacement result can be
obtained. Liu et al. (2018) proposed fusing InSAR and
GNSS data based on the spatio-temporal random effects
(STRE) model, the fusion result is obtained by the spa-
tial model and recurring its state transition equation in
time domain; Shi et al. (2019) proposed an enhanced
STRE (eSTRE) fusion method, which considers spatial
heterogeneity in spatial modeling.

Since the fourth method can directly fuse multi-source
displacement data and does not need to construct a function
between the deformation observation and the physical quan-
tity (this may have deviations), we apply in-depth research

to further improve this approach. As a classic dynamic fil-
tering model in the fourth method, the STRE model (Cressie
et al. 2010; Katzfuss and Cressie 2011) has the advantages
of dimensionality reduction and avoids storing and reversing
super-large matrices.

For the current research on fusion of GNSS and InSAR
deformation data using the STRE model, Liu et al. (2018)
used the layers quadtree approach to uniformly select the
spatial basis at multiple scales, but they did not explain how
to determine the range at each scale, which highly depends on
personal data processing experience and operational skills;
Shi et al. (2019) proposed eSTREmodel based on Liu’s work
(using the same set of data which covers an area of approxi-
mately 120× 130 km and includes only 15 periods of InSAR
data),which considers spatial heterogeneity and improves the
accuracy of spatial modeling by adding spatial basis in the
local heterogeneous region, but it depends more on the prior
knowledge of the study area.

In summary, there are still some deficiencies in the cur-
rent research of using STREmodel to fuse GNSS and InSAR
deformation data. First, Liu et al. (2018) and Shi et al. (2019)
only used a set of deformation observation data, which is
insufficient with the current InSAR time series data, for
example, the data of Sentinel-1 satellites can reach at least
12-days temporal resolution and covers large spatial areas
(250 km swath width in interferometric mode) in most areas
of the Earth’s surface. Because the spatio-temporal behavior
of the denser deformation signals in a larger area is expected
to bemore complicated, evenwith amixture of instantaneous
and latency deformation components, these deformations
manifest in linear and nonlinear forms (Fukuda and Johnson
2010; Minson et al. 2014). Secondly, their fusion method
strongly relies on prior information and personal experience,
which severely hinders the application and promotion of the
STRE model in the data fusion.

To solve these two problems and improve the applicability
of the STRE model, here we propose an improved STRE
model and apply it to fuseGNSS and InSARobservation data
in a small area (approximately 70 × 95 km) and a large area
(approximately 285 × 380 km) to verify the effectiveness of
the model.

2 Improved STREmodel

Based on the existing STRE model for GNSS and InSAR
data fusion, we propose an improved STRE model, which
optimizes the spatial modeling process through the method
of spatial basis automatic selection, to reduce the dependence
on prior information and personal experience. Furthermore,
we improve the applicability and stability of STRE model in
the process of GNSS and InSAR data fusion.

123



Fusion of GNSS and InSAR time series using the improved STRE … Page 3 of 20 47

The basic principle of the STRE model is to construct
the spatio-temporal Kalman observation equation based on
the spatial model, different from pure spatial interpolation
methods such as kriging interpolation (Cressie 1990), which
weight the observations of the specific neighborhood of the
unknown point to predict the optimal value.

The STREmodel (Cressie and Johannesson 2008) decom-
poses the spatio-temporal observation data Z(s, t) into the
trend termμt (s), which represents the change trend of data in
the time domain, local variation ν(s, t) describing the obvi-
ous large-scale numerical aggregation in the spatial domain
which mainly includes the overall change information of
the data block, subtle variation ξ (s, t) depicting small-scale
numerical changes that are relatively discrete in the spatial
domain and supplements the information missed by local
variation, and observation noise εt (s) caused by external
environment and data calculation, so that the model results
are closer to the modeled data without being too smooth.

Z(s, t) � μt (s) + ν(s, t) + ξ(s, t) + εt (s) (1)

whereμt (s) is obtained by taking themean value of the obser-
vations in the spatial domain, ν(s, t) is calculated by spatial
modeling, ξ (s, t) is estimated by the expectation–maximiza-
tion (EM) iteration combined with the fixed rank forward
filter (FRF) or fixed rank backward smoothing (FRS), and
εt (s) can be regarded as a Gaussian white noise process.

The process of fusing GNSS and InSAR data using the
improved STRE model can be divided into five steps (as
shown in Fig. S1 in the Supplementary Material). First, the
GNSS and InSAR displacement data are obtained, and the
measurement geometry is unified. Next, the InSAR data are
used for spatial modeling. Then, the spherical model is used
to separate the variances of subtle variation and observation
noise. Subsequently, the GNSS weight is estimated by the
variance component estimation (Harville 1977). Finally, the
FRF and FRS of the EM iteration are carried to obtain the
time-varying state argument and small-scale subtle variation,
until the termination condition is met, and the deformation
fusion results can be calculated according to Eq. (1). The
details are as follows:

2.1 Unifiedmeasurement geometry

First, the measurement geometry of GNSS and InSAR data
needs to be unified. Here we project the GNSS three-
dimensional deformation (Zn, Ze, Zu) to the InSAR line of
sight (LOS) direction (Zl) through the azimuth of the satel-
lite heading vector α (positive clockwise from the North) and
the radar incidence angle θ at the target point (Fialko et al.
2001):

Zl � Znsin(α)sin(θ) − Zecos(α)sin(θ) + Zucos(θ) (2)

If multi-geometry InSAR data either from different SAR
spacecrafts or the two-track observations (ascending and
descending) are available in the same study area and time
duration, we can also unify the measurement geometry of
GNSS and InSAR data according to Eq. (2), to obtain the
GNSS deformation in the LOS direction of the InSAR satel-
lite. By fusing each group of InSAR displacement time
series with GNSS data, we can obtain the fusion result with
high spatio-temporal resolution corresponding to each group
of InSAR data. The research of Fuhrmann and Garthwaite
(2019) shows that combined with the relationship between
the observation values in E, N, U and the LOS direction, mul-
tiple InSAR data or other independent geodetic data can be
used to decompose the E, N, U components directly through
the least square adjustment. Therefore, in combination with
multi-track and multi-platform InSAR data, it is possible
to obtain three-dimensional high spatio-temporal resolution
deformation result through data fusion.

After the direction of the observation data is unified, we
adopted a single GNSS site as a reference point for measure-
ment geometry connection (Chaussard et al. 2014;Mahapatra
et al. 2018), because this method is simple to implement and
can be validated by unconnectedGNSS sites in the study area
(Johnston et al. 2021). For an optimal selection of a GNSS
site as reference site, we consider the amount of missing data
within the time range of InSAR observations, the stability of
the GNSS site and the difference between GNSS and InSAR
data after the measurement geometry is unified.

The difference between the GNSS and InSAR data after
the unification of the framework is small, which ismanifested
as a spatially uncorrelated error. According to the Sect. 2.3
"Separate the subtle variation and noise", the error caused by
the GNSS reference site can be added into the observation
noise, so the error caused by the GNSS reference site has less
effect on the subtle variation ξ (s, t). In addition, since GNSS
data can largely reduce the effects of atmospheric errors by
differencing between GNSS sites, unifying the InSAR and
GNSS data can help mitigate the effects of undesirable tur-
bulence in InSAR time series data.

2.2 InSAR data spatial modeling

After the measurement geometry is unified, we perform spa-
tialmodeling on the InSARdata. The spatialmodel expresses
the local variation ν(s, t) as the product of the spatial basis
St (s) and the time-varying state argument a(t):

ν(s, t) � St (s)a(t) (3)

where St (s) � [S1, t (s), S2, t (s), . . . , Sr , t (s)]
′

is
used to describe the degree of spatial correlation
between the spatial basis and surrounding sites,
a(t) � [a1(t), a2(t), . . . , ar (t)]

′
is used to describe
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the temporal change of the response value corresponding to
the spatial basis.

Although in theory, the value of St (s) is temporally and
spatially correlated. To realize the construction and solution
of the spatial model, we simplify St (s) to be uncorrelated
in the temporal domain. This simplification will cause the
error of spatial modeling to gradually increase over time. By
estimating subtle variation ξ (s, t), we can well supplement
the deformation information missed by spatial modeling.

During the experiment, we choose the bi-square function
(Cressie and Johannesson 2008) as the basis function to cal-
culate St (s):

S(s) �
{{

1 − (s − cl/gl)2
}2

s − cl < gl
0 otherwise

(4)

where s is the location of InSAR pixel,cl is the location of
l th scale spatial basis, ‖s − cl‖ is the distance between the
InSARpixel and the spatial basis, gl is the distance threshold.

After constructing the spatial basis St (s), the estimation of
the time-varying state argument â(t) and residual V t can be
obtained through the least squares. The calculation formula
is as follows:

â(t) � (
S′S

)−1S′(Zt − μt
)

(5)

V t � Zt − μt − S
[(
S′S

)−1S′(Zt − μt
)]

(6)

2.2.1 Spatial bases selection method

The spatial bases selection is an important part of spatial
modeling. A suitable selection scheme can ensure that suf-
ficient local deformation is obtained, however, there is no
reference criterion to assist the spatial bases selection. Inter-
estingly, during the data fusion experiment, we found that in
the initial stage, the model effect was basically proportional
to the number of spatial bases; but when increased to a cer-
tain level, the effect peaked. After this peak, if the number
increased, the effect would not be significantly improved,
and overfitting may even occur.

In fact, the spatial bases selection is mainly determined by
the calculation amount and accuracy. The calculation amount
can bemeasured by the number of spatial bases, the accuracy
can be judged by the error RMS value. Based on this, we
propose an exact selection criterion I nds :

I nds � VRMS/VN � (RMS1 − RMS2)
/
(N1 − N2) (7)

where VRMS is the difference in the error RMSvalue between
the two selection schemes and VN is the difference in the
number of spatial bases. I nds characterizes the degree to

which increasing the number of spatial bases can improve
the accuracy of spatial modeling. What we need to do is
to find the most suitable selection scheme according to the
criterion I nds .

To reduce the dependence on prior information and
capture more local deformation, spatial bases are evenly dis-
tributed and performed on multiple scales until the residual
stabilizes (Cressie and Johannesson 2008). The details are
shown in Fig. S2 in the Supplementary Material.

In the improved STRE model, the spatial bases selection
mainly includes the following steps:

1) Select a large range value and calculate the spatial mod-
eling residual.

2) A series of continuous range values are obtained by grad-
ually reducing the range value.

3) For each range value, perform spatial modeling and cal-
culate the error RMS value.

4) Group according to the number of spatial bases and select
the range value with the smallest error RMS value as the
representative.

5) The I nds corresponding to each group is calculated and
the median value is obtained.

6) Finally, the last spatial bases selection scheme whose
criterion value is greater than themedian value is selected
as the optimal selection scheme.

Although the spatial bases selection method requires
multiple spatial modeling and residual calculation, each cal-
culation only needs to perform a least squares operation
(Eqs. 5 and 6) for the InSAR data, so the calculation amount
will not be significantly increased.

2.3 Separation of subtle variation and noise

In the residual of InSAR data spatial modeling calculated
by Eq. (6), there is still some deformation information that
the spatial model did not capture, including subtle variation
ξ (s, t) and observation noise εt (s). To model the residuals of
the spatial model, the subtle variation ξ (s, t) and the obser-
vation noise εt (s) are modeled as temporally and spatially
uncorrelated Gaussian white noise (ξ (si , t) ∼ N(0, σ 2

ξ , si
),

εt (si ) ∼ N(0, σ 2
ε, si )).

Since the differences between the InSAR and GNSS data
after the unified measurement geometry do not show sig-
nificant spatial clustering, we consider the variance of the
observation noise εt (s) to be spatially uncorrelated. And the
small-scale subtle variation is affected by the ability of spatial
modeling to capture deformation information, sowe consider
that the variance of the subtle variation ξ (s, t) is spatially
correlated. Based on these assumptions that the variances of
ξ (s, t) and εt (s) have different spatial distribution patterns,
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we compute the semi-variogram residual value γ and fit it
with a spherical model to separate the variances of ξ (s, t)
and εt (s):

γ (h) � 1

2N

N∑
i�1

[Vt (xi ) − Vt (xi + h)]2 (8)

γ (h) �

⎧⎪⎪⎨
⎪⎪⎩
0 h � 0

C0 + C
(
3h
2a − h3

2a3

)
0 < h ≤ a

C0 + C h > a

(9)

where h is the distance between different InSAR pixels, N
is the number of InSAR pixels, Vt is the spatial modeling
residual, xi is the location of InSAR pixel, a is the variable
range,C0 is the nugget valuewhich represents the variance of
the observation noise, andC is the sill value which represents
the variance of subtle variation.

After obtaining the variance of the subtle variation ξ (s, t)
corresponding to each period of InSAR observation data, we
use the temporal interpolation method to calculate the vari-
ance of ξ (s, t) corresponding to each observation moment.

2.4 Estimation of GNSS accuracy

Following our distributional assumptions for subtle variation
and observational noise, the residuals from spatial modeling
of InSAR data (dinst ) and GNSS data (dgnsst ) obey the fol-
lowing distributions:

(
dinst

dgnsst

)
∼ N

[
0,

(
σ 2

ξ Iins + σ 2
ins Iins 0

0 σ 2
ξ Ignss + σ 2

gnss Ignss

)]

(10)

To determine the accuracy of the GNSS observation data,
we first obtain the weight of the InSAR residual dinst com-
pared to the GNSS residual dgnsst through the variance
component iterative estimation (Harville 1977; Xu et al.
2007). Sincewe have calculated the InSARobservation noise
variance σ 2

ins and the subtle variation variance σ 2
ξ in Sect. 2.3,

combined with the weight of the InSAR residual dinst com-
pared to the GNSS residual dgnsst and Eq. (10), we can
calculate theGNSSobservation noise varianceσ 2

gnss to deter-
mine the accuracy of the GNSS data relative to the InSAR
data.

2.5 EM iterative estimation

Until this step, we have obtained the trend term μt (s), the
spatial basis S, the time-varying state quantity â(t) cor-
responding to the InSAR data, the variance of the subtle

variation σ 2
ξ , the variance of GNSS observation noise σ 2

gnss

and InSAR observation noise σ 2
ins .

To obtain the deformation value at each observation
moment, we estimate the spatio-temporal Kalman’s state
transition matrix � and the system noise covariance matrix
Q based on EM iteration (Katzfuss and Cressie 2011) using
GNSS data and InSAR data, and the data processing formula
is as follows:

Observation model:

(11)

(
Zins
t

Zgnss
t

)
�

(
μins
t

μ
gnss
t

)
+

(
Sins
Sgnss

)
a (t)

+

(
ξ inst

ξ
gnss
t

)
+

(
εinst

ε
gnss
t

)

�
(

μins
t

μ
gnss
t

)
+

(
Sins
Sgnss

)
a (t) +

(
dinst

dgnsst

)

The spatial modeling residuals distribution of GNSS and
InSAR data follows Eq. (10).

State transition equation:

a(t) � �a(t − 1) + η(t) η(t) ∼ N(0, Q) (12)

where a(t) is the time-varying state argument of the current
time, a(t − 1) is the time-varying state argument of the pre-
vious time, � is the state transition matrix, Q is the system
noise covariance matrix.

Based on these formulas, the FRF and FRS of the EM
iteration estimation (Shumway and Stoffer 1982) are used
to calculate the time-varying state argument a(t) and small-
scale subtle variation ξ t at each observation moment. The
detailed formulas are shown in Sects. 2.5.1 and 2.5.2.

2.5.1 Fixed rank forward filter

One-step forecast and covariance matrix:

ât−1
t � �ât−1

t−1 (13)

P t−1
t � �P t−1

t−1�
′ + Q (14)

Gain matrix:

Gt � P t−1
t S′(SP t−1

t S′ + D
)−1

(15)

where, D is the variance of spatial modeling residuals
between InSAR and GNSS.

The filter state-argument âtt and its covariance estimate

Pt
t , the subtle variation ξ̂

t
t :

âtt � ât−1
t + Gt

(
Zt − μt − Sât−1

t

)
(16)
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P t
t � P t−1

t − Gt SP t−1
t (17)

ξ̂
t
t � σ 2

ξ

(
SP t−1

t S′ + D
)−1(

Zt − μt − Sât−1
t

)
(18)

The cross-covariance matrix of ât−1
t−1 and âtt :

P t
t |t−1 � �P t−1

t−1 − Gt S�P t−1
t−1 (19)

Posterior estimates of � and Q:

� � B1A
−1
1 (20)

Q � C1 − B1A
−1
1 B

′
1

T
(21)

where, A1 � ∑T
t�1 P

t−1
t−1 + ât−1

t−1a
t−1′
t−1 , B1 �∑T

t�1 P
t+ â

t
t â

t−1′
t−1

t |t−1 , C1 � ∑T
t�1 P

t
t + âtt â

t ′
t .

First,wegive the initial values of the state transitionmatrix
�, the time-varying state-argument â0|0 and the weight
matrix P0|0 at the first moment. Then, by continuously
updating the calculation Eqs. (13) to (19), the time-varying
state-argument âtt , subtle variation ξ̂

t
t , weight matrix Pt

t and
cross covariance matrix P t

t |t−1 at each observation moment
are obtained. After these calculations are completed, the pos-
terior estimates of � and Q corresponding to FRF can be
calculated by Eqs. (20) and (21), and then the new estimates
of âtt , ξ̂

t
t , P

t
t and P t

t |t−1 at each observation moment can be
obtained by re-iterating Eqs. (13) to (19).

2.5.2 Fixed Rank backward Smooth

After FRF is completed, each calculated parameter (̂att , ξ̂
t
t ,

P t
t , P

t
t |t−1) is substituted into the FRS backward smooth-

ing, to obtain the FRS smoothing subtle variation ξ̂
T
t ,

time-varying state-argument âTt , weight matrix PT
t at each

observation moment.
Gain matrix:

J t � P t−1
t−1�

′(P t−1
t

)−1
(22)

The smoothing state-argument âTt and its covariance esti-

mate PT
t , the subtle variation ξ̂

T
t :

âTt � âtt + J t
(
âTt+1 − ât−1

t

)
(23)

PT
t � P t

t + J t
(
PT
t+1 − P t−1

t

)
J

′
t (24)

ξ̂
T
t � ξ̂

t
t − σ 2

ξ G
′
t�

(
P t
t+1

)−1
(
âTt+1 − âtt+1

)
(25)

The cross-covariance matrix of âTt and âTt+1:

PT
t+1|t � P t+1

t+1 J
′
t + J t+1

(
PT
t+2|t+1 − �P t+1

t+1

)
J

′
t (26)

Substituting the corresponding variables into Eqs. (20)
and (21), the posterior estimates of � and Q corresponding
to FRS can be calculated.

Using the newly estimated posterior parameters � and
Q, FRF and FRS are performed again, and the process is
repeated until the iteration termination condition is satisfied
(Liu et al. 2018). Finally, a(t) and ξ t obtained by FRF and
FRS are substituted into Eq. (11), to calculate the filtering
and smoothing estimates. In the fusion experiment, we used
smoothing estimates as the result.

3 Deformation data fusion experiment

We use the improved STRE model to fuse the GNSS and
InSAR displacement data of the San Francisco Bay Area
and Southern California. To verify the fusion effect, we first
used all the GNSS and InSAR data to model and verify the
accuracy and internal reliability, then verify the accuracy
and external reliability by jackknife cross-validation (Miller
1974).

3.1 The San Francisco Bay Area

3.1.1 GNSS and InSAR data processing

The first study area is the San Francisco Bay Area, which
is approximately 70 × 95 km (Fig. 1). The standardized
interferogram products of Sentinel-1A/B obtained by ARIA
(https://aria.jpl.nasa.gov/products) were used to generate
InSAR displacement time series data from 2015-06-05 to
2019-07-02 (i.e., 35 epochs). We used the MintPy software
(Zhang et al. 2019) to estimate the InSAR time series. The
ERA-5 atmospheric model (Jolivet et al. 2011, 2014) were
used to correct the tropospheric delay, and the DEM residual
termwas estimated in the time domain (Fattahi and Amelung
2013). The date of each period of InSAR data is listed in
Table S1 in the Supplementary Material. Some data were
not selected due to low interferometric coherence and large
differences in the derived displacement values compared
to the GNSS. The GNSS data under the IGS14 reference
frame were downloaded from the Nevada Geodesy Labora-
tory (Blewitt et al. 2018), and 42 GNSS sites were selected.

First, we unified the measurement geometry of the GNSS
and InSAR data. We repaired the step items and gross errors
in the GNSS data according to the event record file and
the deformation characteristic function, and then projected
the GNSS displacement in the LOS direction. Considering
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Fig. 1 Spatial distribution of
topography and GNSS sites in
the San Francisco Bay Area. The
red solid line is the InSAR data
footprint. The squares and
triangles denote GNSS site
locations, squares represent the
site used for Jackknife
cross-validation, those with red
frame show the results in the
paper, and the others show the
results in the Supplementary
Material

that the ERA-5 atmospheric model may only be suitable
for decreasing the long-wave atmospheric screen, the errors
caused by localized water vapor may remain in the InSAR
time series. But due to the favorable humidity, vegetation and
landscape in the California area, the water vapour effects in
the area of interest are generally small. Therefore, we unify
the measurement geometry by selecting the GNSS reference
site (see the penultimate paragraph of Sect. 2.1 for details).
Based on the requirements for a suitable reference point dis-
cussed in Sect. 2.1, WIN2 was used as the reference site
to unify the measurement geometry. We select 7 periods of
InSAR displacement time series data after unified measure-
ment geometry at equal intervals and plot them in row “a” of
Fig. 2. The results of all 35 periods are shown in Fig. S3, and
the displacement comparison of the GNSS sites and adja-
cent InSAR pixel is shown in Fig. S4 in the Supplementary
Material.

As shown in row “a” of Fig. 2 and Fig. S3, the displace-
ment of the San Francisco Bay Area mainly occurs in the
southwest part and manifests as subsidence. From the com-
parison between the GNSS site and the adjacent InSAR
pixels (Fig. S4 of the Supplementary Material), the GNSS
and InSAR data after the measurement geometry unified are
in good agreement, and the error RMS is about 3–6 mm.

After the measurement geometry was unified, we calcu-
lated the spatial average of the GNSS and InSAR data and
used wavelet analysis to remove the noise (Fig. S5 of the

Supplementary Material), after which the trend term was
removed from the GNSS and InSAR data.

3.1.2 InSAR data spatial modeling

We adopted the method in Sect. 2.2.1 to select spatial bases
and calculate the error RMSvalue and criterion I nds (Fig. 3).
In the end, the spatial bases we selected contained three dif-
ferent scales, the ranges of each scale were 0.304°, 0.152°,
and 0.076°, and the spatial bases numbers were 9, 30, and
110 (Fig. S6 in the Supplementary Material).

After the spatial bases are determined, the time-varying
state argument of each period is obtained by least squares
as described in Eq. (5), and the 7 periods spatial modeling
results and residuals are shown in row "b" and "d" of Fig. 2,
all 35 periods results and residuals are shown in Fig. S7 and
S8 in the Supplementary Material.

As can be seen from row "b" of Fig. 2 and Fig. S7, the
overall deformation trend can be obtained from the spatial
modeling, but the deformation captured by the spatial bases is
too smooth, and some obvious deformation details are omit-
ted, especially in the southwest and east of the region.

From row "d" of Fig. 2 and Fig. S8, the error of the rela-
tively gentle deformation area is small; however, in the area
with relatively complicate deformation, there is still obvious
deformation information in the residual. For the southwest
corner, the error clustering is relatively serious, and some
are close to 30 mm, indicating that the ability of the spatial
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Fig. 2 Combination diagram of 7 periods InSAR displacement time
series data relative to 2015-06-05 in the San Francisco Bay Area. The
rows "a", "b" and "c" respectively represent the InSAR data after mea-
surement geometry unified, spatial modeling results and fusion results,
the circle indicates the GNSS site locations, and the color indicates the

deformation value. The row "d" represents the residual of spatial mod-
eling, and row "e" represents the residual of the fusion result. Warm
colors (i.e., positive values) denote surface displacements toward the
satellite, and cold colors (i.e., negative values) denote the away-motion
from the satellite

model to capture detailed deformation information is insuf-
ficient. Fig. S8 also shows that the error RMS values are all
below 6 mm and show a gradual upward trend, which means
that while the deformation situation becomes more complex
over time, deformation missing from the spatial model grad-
ually increases, which is determined by the characteristic that
the spatial model is mainly used to reflect the overall spatial
distribution characteristics.

3.1.3 GNSS and InSAR data fusion

We add GNSS data for fusion and obtain the time-varying
state argument and subtle variation in FRF and FRS at
each observation moment through EM iterative estimation.
Finally, the FRS result after multiple iterations is used as the
fusion result of the improved STRE model.

We selected the GNSS sites that had data throughout the
whole InSAR measurement period (a total of 12 sites) to test
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Fig. 3 Criterion and error RMS
value for spatial modeling using
different spatial basis range in
the San Francisco Bay Area. (a)
The red hollow circle represents
the criterion I nds of spatial
modeling, the red filled circle
represents the criterion finally
selected, the blue dotted line
represents the median criterion
value. (b) The red hollow
triangle represents the error RMS
value of spatial modeling, the red
filled triangle represents the error
RMS value finally selected

the accuracy of the improved STREmodel. Themodel fusion
result and original displacement value of the 3 GNSS sites
are plotted in the first column of Fig. 4, and the other 9 GNSS
sites are shown in Fig. S9. For the InSAR data, the 7 periods
model fusion results and residuals are shown in row "c" and
"e" of Fig. 2, all 35 periods results and residuals are shown
in Fig. S10 and S11 in the Supplementary Material.

The first column of Fig. 4 and Fig. S9 show that the
improved STRE model at these 12 GNSS sites are in good
agreement with the original GNSS displacement, and except
for the SBRB site, the error RMS values are all less than
2.5 mm. The larger RMS values at site SBRB can be
explained by significant fluctuations in the original datawhile
the improved STRE model is relatively stable. This means
that the improved STRE model not only reflects the overall
displacement trend, but also has a good smoothing effect on
the noisy GNSS displacement data.

From row "c" of Fig. 2 and Fig. S10, it can be seen that the
result of the improvedSTREmodel is closer to the InSARdis-
placement value, both reflects the overall deformation trend
and supplements the subtle numerical deformation details
missing from the spatial model, especially in the southwest
and east part where the deformation details are complicated.
In addition, it can be clearly seen from Fig. S10 that since
2018-07-31, the subsidence in the southwest part (San Fran-
cisco and San Mateo) has gradually increased, especially on
the periphery, where the deformation is obvious, while the
deformation in other regions gradually tends to be flat. Dur-
ing the entire InSAR monitoring period, the uplift rate in
the east part was relatively small, and it gradually turned to
subsidence in the later period.

As can be seen from row "e" of Fig. 2 and Fig. S11,
throughout the study area, the errors in the improved STRE

model are very small and within 3 mm. In areas with obvi-
ous deformations, such as the southwest corner and the east
part, no obvious large-scale aggregate deformation residual
information was found, indicating that the improved STRE
model has a strong ability to capture deformation details and
accurately reflect the observed deformation value. On the
other hand, the error RMS values are all distributed below
0.21 mm, and the RMS value shows a trend of gradually
decreasing over time, indicating that while the modeling data
is enriched, the displacement details captured by the model
are increasing, and the fusion result gradually approaches the
observed InSAR displacement value, which also proves that
the improved STRE model has good spatial and temporal
stability and reliability.

Based on the fusion results, the CSBAS method (Neely
et al. 2019) is used to calculate the deformation rate field.We
plot the calculated deformation rate in Fig. 5, and draw 4 fault
profile lines at intermediate intervals, one of the profile lines
and the selected 3 representative pixels are drawn together in
Fig. 5, and the other 3 profile lines are drawn in Fig. S12 in
the Supplementary Material.

The left part of Fig. 5 shows that the deformation pattern
of the San Francisco Bay Area is very complicated, the rate
values are all negative and the spatial distribution is complex,
and the deformation rate difference on both sides of the fault
can be clearly seen. In the northeast part, the deformation rate
was relatively small, and the distribution was relatively uni-
form, basically between −10 and −20 mm/yr. In the central
seaport region, the deformation rate was relatively uniform,
largely approximately −25 mm/yr, several large rate regions
on both sides of the bank were basically consistent with
the location of the city, and there was an obviously lower
rate aggregation in the southeast (Silver Creek fault). High
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settlement rates were mainly confined to the southwestern
coastal area, and the area near point 1 reached approximately
−35 mm/yr, which may be caused by Holocene age mud
deposits in the bay and long-term compaction of artificial
landfills (Kooi and De Vries 1998; Bürgmann et al. 2006).

The spatial distribution of the deformation velocities is
essentially consistent with the vertical direction deforma-
tion results of Shirzaei et al. (2018), but the deformation
rate calculated by us was much larger, because the result of
Shirzaei et al. is the deformation rate in the vertical direction
(not including horizontal displacements) referenced to the
GNSS site LUTZ, and our result is the deformation rate in
the LOS direction (including the deformation information in
the three directions) referenced to the GNSS siteWIN2. Fur-
thermore, the time span Shirzaei et al. selected extends from
2007-07-13 to 2010-10-17, and they also noted that global
climate change (i.e., accelerated ice sheet mass loss and
more rapid and prolonged droughts leading to unprecedented
aquifer overdrafts) and local land subsidence exacerbated
the deformation. The deformation rate of the North San
Andreas Fault calculated from our analysis is approximately
30 mm/yr, which is similar to the 34 mm/yr calculated by
Field et al. (2014, 2015) through the weighted summation of
four deformation models (i.e., a geologic model without tec-
tonic constraints, and three models inverted from geologic,
geodetic, and stress data, respectively).

The first three subgraphs of the right part of Fig. 5 show
that the fusion results are in perfect agreement with the
InSAR displacement, with RMS less than 1 mm. Moreover,
the fusion result can reveal the continuous deformation in
time domain,which is helpful for understanding the deforma-
tion evolution in the InSAR data gap, and for supplementing
the areas without GNSS sites or where the GNSS spatial
density is insufficient.

It can be clearly seen from the fourth subgraph on the
right part of Fig. 5 that there is a significant difference in
deformation rate on both sides of the fault, this is consistent
with the fact that the velocity of crustal movement on both
sides of the fault are different. For the Hayward fault and
the Concord fault, the deformation rate difference can even
reach about 5 mm/yr.

3.1.4 Jackknife cross-validation

We selected 3GNSS sites (the second column of Fig. 4) and 5
periods InSARdatawith the same interval (Fig. 6) for the dis-
play of a Jackknife cross-validation (select one of the GNSS
or InSAR data in turn to not participate in the modeling, and
compare the model fusion results with the original data) of
modelled displacement results. The validation results of the
other 9 GNSS sites are shown in Fig. S13, the validation
results and residuals of all 34 periods InSAR data (since the
displacement of the first period is the reference value and all

are zero, it did not participate in the validation) are shown in
Fig. S14 and Fig. S15, and the error RMS values are listed
in Table S2 in the Supplementary Material.

From the second column of Fig. 4 and Fig. S13, the val-
idation results are basically the same as the original GNSS
displacement. Except for the SBRB site whose RMS value
is slightly larger (due to high noise), the RMS values of the
sites are all less than 5 mm. These indicate that the improved
STRE model can accurately reflect the overall displacement
trend and capture the deformation details. However, without
the support of the original GNSS data, the model validation
results showed more fluctuations. In general, there were few
such anomalies, which did not affect the accurate description
of the displacement information.

It can be seen fromFig. 6 that themodel results (the second
column) can reflect the original InSAR displacement infor-
mation (the first column) well, and there is no large overall
deviation, although some deformation information is omit-
ted. From the distribution of residuals (the third column), the
error has a certain degree of clustering and randomness, and
most values are less than 10 mm, indicating that the model
has little deviation. But for 2019-07-02, the error RMS value
reaches 9.3 mm, and some residuals are greater than 15 mm.
Because2019-07-02 is the last periodof data, so the improved
STRE model cannot obtain deformation information from
the later data. The residual error histogram (the fourth col-
umn) shows that the error distribution is reasonably close to a
normal distribution, and most values are concentrated within
5 mm, indicating that the improved STRE model has good
stability and reliability.

From Table S2, we can see that most of the error RMS
values are around 6mm, and only 3 periods of InSARdata are
greater than 9 mm. This shows that even without the support
of the original InSAR deformation data, the improved STRE
model can basically predict the InSAR displacement value,
and the obtained result does not have a large deviation from
the original displacement. However, the RMS value of the
validation results on some InSAR data is relatively large,
this situation is related to the time interval of the InSAR data
used.

3.2 Southern California

3.2.1 GNSS and InSAR data processing

The second study area is located in Southern California,
approximately 285× 380 km (Fig. 7). We used InSAR
time series included 73 periods from 2015-05-14 to 2019-
05-17 from Xiaohua Xu, in which the GMTSAR software
and a coherence-based SBAS method are applied (https://
topex.ucsd.edu/gmtsar/insargen/, (Xu et al. 2017, 2021)).
The specific acquisition dates are listed in Table S3 of the
Supplementary Material. The GNSS data were downloaded
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Fig. 4 Combination diagram of
displacement data in the LOS
direction of 3 GNSS sites in the
San Francisco Bay Area. The
first column shows fusion results
and original displacements, the
second column shows Jackknife
cross-validation result and
original displacements. The red
line is the result of the improved
STRE model or Jackknife
cross-validation, the black line is
the original GNSS displacement

Fig. 5 The deformation rate field in the LOS direction of the San Fran-
cisco Bay Area, the fusion results of 3 representative pixels and the
velocity of the profile line A-A’. The figures on the left shows the defor-
mation rate field, the triangles represent the InSAR pixel shown in the
first three subgraphs on the right, the circle represents the intersection of
the fault and the profile line (corresponding to the black dashed line in
the fourth subgraph of the right figure), the black dashed line indicates

the location of the fault profile line, and the solid red lines indicate the
locations of several major faults (Styron and Pagani 2020). For the fig-
ures on the right, the black line in the first three subgraphs represents the
fusion result, and the circles represent the InSAR displacement value;
the blue line in the fourth subgraph represents the deformation rate
value on the profile line A-A’, the number marked on the abscissa axis
represents the length ratio on the profile line
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Fig. 6 Model validation results and original LOS direction displace-
ments of 5 periods InSAR data in the San Francisco Bay Area. The
first column represents the original InSAR displacement, the second
column represents the model validation result, the third column shows
the residual of the model validation result, and the fourth column is the

histogram of residual distribution (since most of the residual values are
between -20 and 20 mm, the plotting range of the histogram is set to -20
to 20 mm to facilitate display). The color bar on the left corresponds
to the figures in the first and second columns, and the color bar on the
right corresponds to the figures in the third column
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Fig. 7 Spatial distribution of
topography and GNSS sites in
Southern California. The red
solid line is the InSAR data
footprint. The squares and
triangles denote GNSS site
locations, squares represent the
site used for Jackknife
cross-validation, those with red
frame show the results in the
paper, and the others show the
results in the Supplementary
Material

from the Nevada Geodesy Laboratory (Blewitt et al. 2018),
and 199 sites were selected.

We select P476 as the reference site to unify the measure-
ment geometry in the same way as above, and row “a” of
Fig. 8 shows 5 periods of InSAR displacement time series
data at equal intervals after unified measurement geometry.
The results of all 72 periods (considering the picture layout
and the displacement of the first period is the reference zero
value, we ignore the data of the first periodwhen plotting) are
shown in Fig. S16a and Fig. S16b, the displacement compar-
ison of the GNSS sites and adjacent InSAR pixel is shown
in Fig. S17 in the Supplementary Material.

As can be seen in row “a” of Fig. 8, Fig. S16a and S16b,
the overall deformation mode is mainly manifested as subsi-
dence, with the highest magnitude in the southwest part and
a relatively gentle deformation trend in the northern region.
The trend item was removed in the same way as described
above (Fig. S18 in the Supplementary Material).

3.2.2 InSAR data spatial modeling

Weadopted themethod introduced inSect. 2.2.1 to select spa-
tial bases (Fig. S19 in the Supplementary Material), and the
three selected range values were 0.856°, 0.428°, and 0.214°
and the basis numbers were 16, 55, and 220. The specific

spatial basis distribution is shown in Fig. S20 in the Supple-
mentary Material.

After the spatial basis was determined, the time-varying
state arguments were obtained by least squares as described
in Eq. (5), and 5 periods InSAR data spatial modeling results
and residuals are shown in row “b” and row “d” of Fig. 8, all
72 periods InSAR data spatial modeling results and residuals
are shown in Fig. S21a, S21b and Fig. S22a, S22b in the
Supplementary Material. The error RMS value of the spatial
modeling is shown in Fig. S23.

As shown in row “b” of Fig. 8, Fig. S21a and S21b, the
overall deformation trend can be obtained through the spatial
model, but the deformation information is too smooth, and
some obvious deformation details are omitted. This means
that the spatial model can obtain the overall deformation
potential, but as time progresses, the model cannot fully cap-
ture the deformation changes. Fig. S22a and S22b show that
the spatial modeling error is small in most areas, but the error
is large in some areas and the value even exceeds 20 mm.
Fig. S23 shows that the error RMS value is distributed in the
range of 2–7 mm, and gradually increases over time, which
means that the deviation between the modeling results and
the InSAR displacement increases gradually, and the spatial
model cannot fully reflect the temporal evolution of displace-
ment.
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Fig. 8 Combination diagram of 5 periods InSAR displacement time
series data relative to 2015-05-14 in Southern California. The rows "a",
"b" and "c" respectively represent the InSAR data after measurement
geometry unified, spatial modeling results and fusion results, the circle
indicates the GNSS site locations, and the color indicates the defor-
mation value. The row "d" represents the residual of spatial modeling,

and row "e" represents the residual of the fusion result. Warm colors
(i.e., positive values) denote surface displacements toward the satellite,
and cold colors (i.e., negative values) denote the away-motion from the
satellite
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3.2.3 GNSS and InSAR data fusion

The GNSS data were added to the data fusion process, and
we selected all the sites that had data throughout the whole
InSAR measurement period (a total of 74 sites) to test the
accuracy of the improved STRE model. The comparison
results of 8 sites are shown in Fig. 9, and the other 66 sites are
shown in Fig. S24a and S24b of the SupplementaryMaterial.

For the InSAR fusion result, we show the improved STRE
model displacement results (row “c” of Fig. 8) and residual
(row “e” of Fig. 8) of 5 periods InSARdata, and all 72 periods
results and residual are shown in Fig. S25a, S25b and Fig.
S26a, S26b of the Supplementary Material.

Figure 9, Fig. S24a and S24b show that the model results
of the improved STRE model are in good agreement with
the GNSS displacement, which accurately reflect the overall
displacement trend and the value changes, and the stability
of the model results relative to the GNSS displacement data
has also been further strengthened. Except for the P561 site,
the error RMS values are all less than 5 mm. At site P561,
the larger error RMS is a result of fluctuations in the GNSS
observation data while the improved STRE model is rela-
tively stable.

As shown in row “c” of Fig. 8, Fig. S25a and S25b, after
adding the GNSS data for EM estimation, the model results
are more consistent with the InSAR deformation data and
capture more deformation information based on the spatial
model, especially in the southwest part.

Row “e” of Fig. 8, Fig. S23, S26a and S26b show that
there is no obvious deformation information missing of the
improved STRE model, and the error distribution is basi-
cally random, with the error RMS value less than 0.25 mm.
Furthermore, the RMS value showed a gradually decreas-
ing trend, it gradually stabilized and eventually dropped to
approximately 0.05 mm. These indicate that the improved
STRE model has good stability and reliability in spatial
and temporal domain, while enriching the observation data,
the time-varying information and subtle variation are more
and more fully captured, and the fusion result is gradually
approaching the InSAR displacement observation data.

Based on the fusion results, the CSBAS method (Neely
et al. 2019) was used to calculate the deformation rate field
as shown in Fig. 10.

Figure 10 (left) shows that the displacement rates on both
sides of the fault are significantly different, and the defor-
mation can be roughly divided into three parts along the
line from northeast to southwest, which is consistent with
results from Hearn (2019). The rate of the first part was rela-
tively small and uniform, concentrated from 0 to−10mm/yr,
which is basically the same as the Panamint Valley fault
and Death Valley fault calculated by other scholars (Johnson
2013; Zeng and Shen 2014, 2016). The rate of the second
part was approximately -10 to −20 mm/yr, the southwest

direction was slightly larger, and the deformation rate of the
Garlock fault in the area was in good agreement with results
from Hearn (2019). Areas with large subsidence rates were
mainly distributed in the third part of the southwest corner,
someofwhichwere close to−35mm/yr, and theSanAndreas
Fault (Mojave, Bernardino, Jacinto, and Gorgonio) deforma-
tion rate was equivalent to that of Johnson (2013) and Evans
(2018).

In addition, some deformation anomalies in the displace-
ment velocity figure correspond well to areas of known
anthropogenic activities. For the local deformation anomaly
area northwest of point 2, the Corso volcanic field is on
the west side of this anomaly area, and there is one of the
largest geothermal generators in the United States located
in this deformation anomaly area ("https://www.usgs.gov/
volcanoes/coso-volcanic-field"). For the local deformation
anomaly area east of point 2, Sears Lake is located at this
location, due to a huge resource of sodium and potassium
minerals of the carbonate, sulfate, borate and halide classes
of mineralogy, the mining activities here are very active
("https://en.wikipedia.org/wiki/Searles_Lake").

Figure 10 (right) shows that the fusion results are in good
agreement with the InSAR displacement, which can provide
deformation data with higher time resolution, and the error
RMS value less than 0.7 mm. This means that within the
time interval of InSAR observations, the fusion results can
provide effective deformation results, enabling us to grasp
high-temporal dynamic deformation information and better
understand deformation evolution,which can compensate for
the low spatial resolution of GNSS and the low temporal
resolution of InSAR data.

3.2.4 Jackknife cross-validation

We verified the accuracy and external reliability of the
improved STRE model using Jackknife cross-validation. 8
GNSS sites (Fig. 11) and 6 periods InSAR data with the same
interval (Fig. 12) are used for display. The validation results
of other 66 GNSS sites are shown in Fig. S27a and S27b,
the validation results and residuals of all 72 periods data are
shown in Fig. S28a, S28b, S29a and S29b, the error RMS
values are listed in Table S4 of the Supplementary Material.

As can be seen from Fig. 11, Fig. S27a and S27b, the
results of Jackknife cross-validation are basically consistent
with the original GNSS displacement.Most of the error RMS
values are less than 6 mm, except for the OPRD site, where
the RMS values are all less than 10 mm. In general, although
the validation results show a little fluctuation and deviation,
they can properly reflect the GNSS displacement trend and
deformation magnitude.

Figure 12, Fig. S28a and S28b show that the validation
results can reflect the original InSAR displacement informa-
tion, although there is some deformation information that

123

https://www.usgs.gov/volcanoes/coso-volcanic-field
https://en.wikipedia.org/wiki/Searles_Lake


47 Page 16 of 20 H. Yanet al.

Fig. 9 Model fusion results and
original displacements in the
LOS direction of 8 GNSS sites in
Southern California. The red line
is the result of the improved
STRE model, the black line is the
original GNSS displacement in
the LOS direction

Fig. 10 The deformation rate
field in the LOS direction of
Southern California and the
fusion results of 5 representative
pixels. The figures on the left
shows the deformation rate field
in the LOS direction, the
triangles represent the location of
the InSAR pixel shown on the
right, and the solid red lines
indicate the locations of several
major faults (Styron and Pagani
2020). For the figures on the
right, the black line represents
the fusion result, and the circles
represent the InSAR
displacement value

cannot be fully reflected, this may be the atmospheric delay
missed by the fusion model. Since the InSAR data corre-
sponding to the modeling period does not participate in the
validation process, we only use the InSAR data before and
after this period and GNSS data for modeling, and the spatial
distributions of GNSS sites are relatively sparse compared to
the InSAR resolution, which leads the fusion model unable
to fully capture the deformation caused by the regional water

vapor phase delay. The validation results residual distribu-
tion map (Fig. S29a and S29b) show that this part of the
error is clustered and random in spatial domain, most val-
ues are less than 5 mm, which did not affect the expression
of the displacement by the fusion model. The residual error
histogram (the fourth column of Fig. 12) shows that the resid-
uals are concentrated within 2 mm and the error distributions
are close to a normal distribution, which further proves the
stability and reliability of the improved STRE model.
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Fig. 11 Jackknife
cross-validation results and
original displacements in the
LOS direction of 8 GNSS sites in
Southern California. The red line
is the result of Jackknife
cross-validation, the black line is
the original GNSS displacement
in the LOS direction

From Table S4, we can see that the error RMS value is
mostly around 2 mm. As for the San Francisco Bay Area
example, the last period of data reveals a higher error RMS
since the model cannot obtain deformation information from
subsequent observation periods. Except for the last period
(2019-05-17) where the error RMS value is greater than
4mm, theRMSvalues are all less than 3mm.This proves that
the improved STRE model has good reliability and stability
in spatial and temporal domain. Even if there is no original
InSAR deformation data to supplement, the improved STRE
model can correctly predict the InSAR displacement value
and its deformation potential, and the results are basically
consistent with the original InSAR displacement data.

4 Conclusions

GNSS and InSAR data fusion can give full play to the advan-
tages of these two geodetic methods, and the STRE model
has a high potential for reliable data fusion. However, it has
the limitations of relying on prior information and lacks
experimental confirmation. To solve these two problems,
we proposed a spatial basis automatic selection method to
improve the STRE model and applied it to the fusion of
GNSS and InSAR deformation data in the San Francisco
Bay Area and Southern California. For these two exper-
iments, the improved STRE model showed excellent data
fusion effects and no longer depended on prior information

and personal experience, significantly enhancing the adapt-
ability of the model. Regarding the problem of insufficient
GNSS and InSAR data in deformation monitoring and disas-
ter awareness, the improved STREmodel is expected to play
an important role in providing high spatio-temporal resolu-
tion and high-precision deformation result.

The results of spatial modeling using InSAR data show
that spatialmodeling can obtain the overall deformation trend
of the study area, and has a good ability to capture large-
scale deformation signals. For the two experiments, most of
the spatial modeling residuals are less than 15 mm, and as
the study area increases, the number of selected spatial bases
increases from 149 to 291, which means that the calcula-
tion of the model does not increase significantly. However,
for some small-scale subtle deformation, spatial modeling is
difficult to capture, resulting in too smooth results and the
model residual presents a gradually increasing trend.

After adding GNSS data for fusion, the residual error of
the previous spatial model is greatly improved, especially
in areas with complex deformation conditions. In terms of
the error of the fusion results, most of the model errors are
less than 3 mm, and the InSAR error RMS value of each
period is less than0.3mm, indicating thatwith the enrichment
of displacement data, time-varying information and subtle
variation are increasingly fully captured, the fusion results
gradually approach the observed displacement values, which
proves that the improved STRE model has good stability
and reliability in the time domain. More importantly, in the
InSAR data gap, the improved STRE model can interpolate
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Fig. 12 Model validation results
and original LOS direction
displacements of 6 periods
InSAR data in Southern
California. The first column
represents the original InSAR
displacement, the second column
represents the model validation
result, the third column shows
the residual of the model
validation result, and the fourth
column is the histogram of
residual distribution. The color
bar on the left corresponds to the
figures in the first and second
columns, and the color bar on the
right corresponds to the figures in
the third column

the continuous displacement time series with high temporal
resolution and high precision, which compensates for the
deficiency in GNSS low spatial resolution and InSAR low
temporal resolution.

Using the fusion results of the improved STRE model
to calculate the deformation rate field, it is found that our
calculation results can accurately reflect the difference in

deformation rates on both sides of a fault, and the defor-
mation rate and its spatial distribution are in good agreement
with the research results of other scholars for the two areas
of interest (San Francisco Bay and Southern California). For
some abnormal deformation areas detected in the rate field,
the deformation corresponds well with the location of known
anthropogenic activities. All these indicate that the improved
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model is suitable for fusing a large amount of long-term
GNSS and InSAR data, and it can play an important role in
providing high spatio-temporal resolution and high-precision
deformation data, to help us obtain more detailed deforma-
tion evolution information.

The Jackknife cross-validation results further demonstrate
that the improved STREmodel has good spatial and temporal
stability and reliability. For the GNSS validation results, the
model results can correctly capture the observed displace-
ment information, and the model results agree well with the
original GNSS displacement. Although the model results are
sometimes overestimating or underestimating the observed
deformation, the frequency of this abnormal situation is low,
and the error RMS values are mostly less than 8 mm. For
the InSAR validation results, the model can properly reflect
the overall deformation behavior, but some local deforma-
tion information will still be missed. Fortunately, the spatial
distribution of the residual is relatively random, the resid-
ual values are close to a normal distribution and most of the
errors are within 10 mm.

Our current researchmainly focuses on the deformation in
the LOS direction. In the future, we intend to conduct more
in-depth research on fusingmulti-geometry InSAR data with
GNSS data to recover the high-precision three-dimensional
deformation field. Furthermore, combining the selection of
spatial bases with the down-sampling algorithm is also our
next research plan, which is expected to further improve the
stability and reliability of the model.
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tary material available at https://doi.org/10.1007/s00190-022-01636-7.
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